Math  /  Algebra

QuestionOfficial Time: 10:14:12
Question 3 [10 points] If u\mathbf{u} and v\mathbf{v} are the vectors below, solve the following equation for the vector x\mathbf{x}. u=[532]v=[555]x2u+v=3(ux)2vx=[000]\begin{array}{l} \mathbf{u}=\left[\begin{array}{l} -5 \\ -3 \\ -2 \end{array}\right] \mathbf{v}=\left[\begin{array}{c} -5 \\ 5 \\ 5 \end{array}\right] \\ \mathbf{x}-2 \mathbf{u}+\mathbf{v}=3(-\mathbf{u}-\mathbf{x})-2 \mathbf{v} \\ \mathbf{x}=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right] \end{array} SUBMIT AND MARK

Studdy Solution

STEP 1

What is this asking? Find the vector x\mathbf{x} that satisfies the given equation involving vectors u\mathbf{u} and v\mathbf{v}. Watch out! Vector arithmetic follows specific rules – be careful with those negative signs and scalar multiplications!

STEP 2

1. Expand the equation
2. Group like terms
3. Isolate x\mathbf{x}
4. Substitute u\mathbf{u} and v\mathbf{v}
5. Calculate x\mathbf{x}

STEP 3

Let's **distribute** those scalars on both sides of the equation to get rid of the parentheses.
Remember, this means multiplying each component of the vector by the scalar.
So, we have: x2u+v=3(ux)2v \mathbf{x} - 2\mathbf{u} + \mathbf{v} = 3(-\mathbf{u} - \mathbf{x}) - 2\mathbf{v} becomes x2u+v=3u3x2v \mathbf{x} - 2\mathbf{u} + \mathbf{v} = -3\mathbf{u} - 3\mathbf{x} - 2\mathbf{v} Great!

STEP 4

Now, let's get all the x\mathbf{x} terms on one side and all the u\mathbf{u} and v\mathbf{v} terms on the other.
We want to **isolate** x\mathbf{x}, after all!
Adding 3x3\mathbf{x} to both sides and adding 2u2\mathbf{u} and subtracting v\mathbf{v} from both sides gives us: x+3x=3u+2u2vv \mathbf{x} + 3\mathbf{x} = -3\mathbf{u} + 2\mathbf{u} - 2\mathbf{v} - \mathbf{v}

STEP 5

This simplifies to: 4x=u3v 4\mathbf{x} = -\mathbf{u} - 3\mathbf{v} Awesome!

STEP 6

To completely **isolate** x\mathbf{x}, we need to divide both sides by 44: x=14(u3v) \mathbf{x} = \frac{1}{4}(-\mathbf{u} - 3\mathbf{v}) Looking good!

STEP 7

Now, let's **substitute** the given values of u\mathbf{u} and v\mathbf{v} into our equation: x=14([532]3[555]) \mathbf{x} = \frac{1}{4}\left(-\begin{bmatrix} -5 \\ -3 \\ -2 \end{bmatrix} - 3\begin{bmatrix} -5 \\ 5 \\ 5 \end{bmatrix}\right)

STEP 8

First, we'll handle the **scalar multiplications**: x=14([532]+[151515]) \mathbf{x} = \frac{1}{4}\left(\begin{bmatrix} 5 \\ 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 15 \\ -15 \\ -15 \end{bmatrix}\right)

STEP 9

Next, let's **add** those vectors component-wise: x=14[201213] \mathbf{x} = \frac{1}{4}\begin{bmatrix} 20 \\ -12 \\ -13 \end{bmatrix}

STEP 10

Finally, we **multiply** by 14\frac{1}{4}: x=[142014(12)14(13)]=[53134] \mathbf{x} = \begin{bmatrix} \frac{1}{4} \cdot 20 \\ \frac{1}{4} \cdot (-12) \\ \frac{1}{4} \cdot (-13) \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \\ -\frac{13}{4} \end{bmatrix}

STEP 11

So, the solution is x=[53134]\mathbf{x} = \begin{bmatrix} 5 \\ -3 \\ -\frac{13}{4} \end{bmatrix}.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord