Math  /  Trigonometry

QuestionNote: Triangle may not be drawn to scale. Suppose a=11\mathrm{a}=11 and A=25\mathrm{A}=25 degrees. Find: b=b= \square c=c= \square B=B= \square degrees
Give all answers to at least one decimal place. Give angles in degrees

Studdy Solution

STEP 1

1. The triangle is a right triangle.
2. Angle A A is 25 25^\circ .
3. Side a a is opposite angle A A and is 11 11 .
4. We need to find side b b (adjacent to angle A A ), side c c (the hypotenuse), and angle B B .

STEP 2

1. Use trigonometric ratios to find side b b .
2. Use trigonometric ratios to find side c c .
3. Use the angle sum property of triangles to find angle B B .

STEP 3

Use the tangent function to find side b b :
tan(A)=ab    b=atan(A)\tan(A) = \frac{a}{b} \implies b = \frac{a}{\tan(A)}
Substitute the given values:
b=11tan(25)b = \frac{11}{\tan(25^\circ)}
Calculate b b :
b110.466323.6b \approx \frac{11}{0.4663} \approx 23.6

STEP 4

Use the sine function to find side c c :
sin(A)=ac    c=asin(A)\sin(A) = \frac{a}{c} \implies c = \frac{a}{\sin(A)}
Substitute the given values:
c=11sin(25)c = \frac{11}{\sin(25^\circ)}
Calculate c c :
c110.422626.0c \approx \frac{11}{0.4226} \approx 26.0

STEP 5

Use the angle sum property of triangles to find angle B B :
A+B+90=180    B=18090AA + B + 90^\circ = 180^\circ \implies B = 180^\circ - 90^\circ - A
Substitute the given value for A A :
B=1809025=65B = 180^\circ - 90^\circ - 25^\circ = 65^\circ
The solutions are:
b23.6,c26.0,B=65b \approx 23.6, \quad c \approx 26.0, \quad B = 65^\circ

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord