Math

Question Find the product of a(x)=2xa(x) = 2x, b(x)=x+7b(x) = -x + 7, and c(x)=3x5c(x) = 3x - 5.

Studdy Solution

STEP 1

Assumptions
1. The functions are given as follows: - a(x)=2x a(x) = 2x - b(x)=x+7 b(x) = -x + 7 - c(x)=3x5 c(x) = 3x - 5
2. We need to find the product a(x)b(x)c(x) a(x) \cdot b(x) \cdot c(x) .

STEP 2

First, we will multiply the functions a(x) a(x) and b(x) b(x) together.
a(x)b(x)=(2x)(x+7) a(x) \cdot b(x) = (2x) \cdot (-x + 7)

STEP 3

Distribute 2x 2x across the terms in b(x) b(x) .
a(x)b(x)=2x(x)+2x7 a(x) \cdot b(x) = 2x \cdot (-x) + 2x \cdot 7

STEP 4

Perform the multiplication for each term.
a(x)b(x)=2x2+14x a(x) \cdot b(x) = -2x^2 + 14x

STEP 5

Now we have the product of a(x) a(x) and b(x) b(x) . Next, we will multiply this result by c(x) c(x) .
(a(x)b(x))c(x)=(2x2+14x)(3x5) (a(x) \cdot b(x)) \cdot c(x) = (-2x^2 + 14x) \cdot (3x - 5)

STEP 6

Distribute each term in 2x2+14x -2x^2 + 14x across the terms in c(x) c(x) .
(a(x)b(x))c(x)=(2x23x)+(2x25)+(14x3x)+(14x5) (a(x) \cdot b(x)) \cdot c(x) = (-2x^2 \cdot 3x) + (-2x^2 \cdot -5) + (14x \cdot 3x) + (14x \cdot -5)

STEP 7

Perform the multiplication for each term.
(a(x)b(x))c(x)=6x3+10x2+42x270x (a(x) \cdot b(x)) \cdot c(x) = -6x^3 + 10x^2 + 42x^2 - 70x

STEP 8

Combine like terms.
(a(x)b(x))c(x)=6x3+(10x2+42x2)70x (a(x) \cdot b(x)) \cdot c(x) = -6x^3 + (10x^2 + 42x^2) - 70x

STEP 9

Add the coefficients of the x2 x^2 terms.
(a(x)b(x))c(x)=6x3+52x270x (a(x) \cdot b(x)) \cdot c(x) = -6x^3 + 52x^2 - 70x
The product a(x)b(x)c(x) a(x) \cdot b(x) \cdot c(x) is 6x3+52x270x -6x^3 + 52x^2 - 70x .

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord