Math  /  Geometry

QuestionMinimize: z=700x+600y\quad z=700 x+600 y

Studdy Solution

STEP 1

1. The problem is a linear programming problem.
2. The objective function to minimize is z=700x+600y z = 700x + 600y .
3. The feasible region is defined by the vertices: (5,45) (5, 45) , (40,45) (40, 45) , (30,40) (30, 40) , (35,25) (35, 25) , and (40,5) (40, 5) .

STEP 2

1. Identify the vertices of the feasible region.
2. Evaluate the objective function at each vertex.
3. Determine the minimum value of the objective function.

STEP 3

Identify the vertices of the feasible region:
The vertices are given as: - (5,45) (5, 45) - (40,45) (40, 45) - (30,40) (30, 40) - (35,25) (35, 25) - (40,5) (40, 5)

STEP 4

Evaluate the objective function z=700x+600y z = 700x + 600y at each vertex:
1. At (5,45) (5, 45) : $ z = 700(5) + 600(45) = 3500 + 27000 = 30500 \]
2. At (40,45) (40, 45) : $ z = 700(40) + 600(45) = 28000 + 27000 = 55000 \]
3. At (30,40) (30, 40) : $ z = 700(30) + 600(40) = 21000 + 24000 = 45000 \]
4. At (35,25) (35, 25) : $ z = 700(35) + 600(25) = 24500 + 15000 = 39500 \]
5. At (40,5) (40, 5) : $ z = 700(40) + 600(5) = 28000 + 3000 = 31000 \]

STEP 5

Determine the minimum value of the objective function:
The calculated values are: - z=30500 z = 30500 at (5,45) (5, 45) - z=55000 z = 55000 at (40,45) (40, 45) - z=45000 z = 45000 at (30,40) (30, 40) - z=39500 z = 39500 at (35,25) (35, 25) - z=31000 z = 31000 at (40,5) (40, 5)
The minimum value is 30500 \boxed{30500} at the vertex (5,45) (5, 45) .

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord