Math

QuestionFind the limit: limx04+x2x\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x}.

Studdy Solution

STEP 1

Assumptions1. We are asked to find the limit of the function 4+xx\frac{\sqrt{4+x}-}{x} as xx approaches 00. . The function is defined for all real numbers except x=0x =0.

STEP 2

We can see that if we substitute x=0x =0 directly into the function, we will get an indeterminate form of type 00\frac{0}{0}. To resolve this, we can use the conjugate of the numerator to simplify the function.
The conjugate of 4+x2\sqrt{4+x}-2 is 4+x+2\sqrt{4+x}+2.

STEP 3

Multiply the numerator and the denominator by the conjugate of the numerator.
limx0+x2x×+x+2+x+2\lim{x \rightarrow0} \frac{\sqrt{+x}-2}{x} \times \frac{\sqrt{+x}+2}{\sqrt{+x}+2}

STEP 4

implify the numerator using the difference of squares formula (ab)(a+b)=a2b2(a-b)(a+b) = a^2 - b^2.
limx0(4+x)222x(4+x+2)\lim{x \rightarrow0} \frac{(\sqrt{4+x})^2 -2^2}{x(\sqrt{4+x}+2)}

STEP 5

implify the expression further.
limx04+x4x(4+x+2)\lim{x \rightarrow0} \frac{4+x -4}{x(\sqrt{4+x}+2)}

STEP 6

implify the numerator.
limx0xx(4+x+2)\lim{x \rightarrow0} \frac{x}{x(\sqrt{4+x}+2)}

STEP 7

Cancel out the common factor xx from the numerator and the denominator.
limx014+x+2\lim{x \rightarrow0} \frac{1}{\sqrt{4+x}+2}

STEP 8

Now, substitute x=0x =0 into the simplified function.
limx014+0+2\lim{x \rightarrow0} \frac{1}{\sqrt{4+0}+2}

STEP 9

implify the expression to get the limit.
limx4++2=2+2=4\lim{x \rightarrow} \frac{}{\sqrt{4+}+2} = \frac{}{2+2} = \frac{}{4}So, limx4+x2x=4\lim{x \rightarrow} \frac{\sqrt{4+x}-2}{x} = \frac{}{4}.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord