Math  /  Data & Statistics

QuestionLet XX be a random variable with the following probability distribution \begin{tabular}{|c|c|} \hline Value xx of XX & P(X=x)P(X=x) \\ \hline 30 & 0.05 \\ \hline 40 & 0.05 \\ \hline 50 & 0.15 \\ \hline 60 & 0.15 \\ \hline 70 & 0.35 \\ \hline 80 & 0.25 \\ \hline \end{tabular}
Complete the following. (If necessary, consult a list of formulas.) (a) Find the expectation E(X)E(X) of XX. E(X)=E(X)= \square

Studdy Solution

STEP 1

1. The random variable XX has a discrete probability distribution given by the specified table.
2. The expectation (or mean) E(X)E(X) of a discrete random variable XX can be calculated using the formula: E(X) = \sum_{i} x_i P(X = x_i) \] where x_iarethepossiblevaluesof are the possible values of Xand and P(X = x_i)$ are the corresponding probabilities.

STEP 2

1. Identify and list the values xix_i of XX and their corresponding probabilities P(X=xi)P(X = x_i).
2. Apply the expectation formula to calculate E(X)E(X).
3. Sum the products of each value xix_i and its probability P(X=xi)P(X = x_i).

STEP 3

List the values xix_i of XX and their corresponding probabilities P(X=xi)P(X = x_i).
Value xiP(X=xi)300.05400.05500.15600.15700.35800.25\begin{array}{|c|c|} \hline \text{Value } x_i & P(X = x_i) \\ \hline 30 & 0.05 \\ \hline 40 & 0.05 \\ \hline 50 & 0.15 \\ \hline 60 & 0.15 \\ \hline 70 & 0.35 \\ \hline 80 & 0.25 \\ \hline \end{array}

STEP 4

Apply the expectation formula to calculate E(X)E(X).
E(X)=ixiP(X=xi)=300.05+400.05+500.15+600.15+700.35+800.25E(X) = \sum_{i} x_i P(X = x_i) = 30 \cdot 0.05 + 40 \cdot 0.05 + 50 \cdot 0.15 + 60 \cdot 0.15 + 70 \cdot 0.35 + 80 \cdot 0.25

STEP 5

Calculate the individual products.
300.05=1.5400.05=2.0500.15=7.5600.15=9.0700.35=24.5800.25=20.0\begin{aligned} 30 \cdot 0.05 &= 1.5 \\ 40 \cdot 0.05 &= 2.0 \\ 50 \cdot 0.15 &= 7.5 \\ 60 \cdot 0.15 &= 9.0 \\ 70 \cdot 0.35 &= 24.5 \\ 80 \cdot 0.25 &= 20.0 \\ \end{aligned}

STEP 6

Sum the products to find E(X)E(X).
E(X)=1.5+2.0+7.5+9.0+24.5+20.0=64.5E(X) = 1.5 + 2.0 + 7.5 + 9.0 + 24.5 + 20.0 = 64.5
Solution: E(X)=64.5E(X) = 64.5

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord