Math  /  Geometry

QuestionLet P=(0,0,0),Q=(1,1,1),R=(2,1,1)P=(0,0,0), Q=(1,-1,-1), R=(-2,1,1). Find the area of the triangle PQRP Q R. area == \square Let T=(4,4,1),U=(9,7,7),V=(6,7,1)T=(4,4,1), U=(9,7,7), V=(-6,7,1). Find the area of the triangle TUVT U V. area = \square

Studdy Solution

STEP 1

What is this asking? We need to find the area of two triangles in 3D space, given the coordinates of their vertices. Watch out! Remember that the area of a triangle in 3D space is half the magnitude of the cross product of two of its sides.
Don't forget to take the magnitude after calculating the cross product!

STEP 2

1. Find the area of triangle PQR
2. Find the area of triangle TUV

STEP 3

Let's **define** the vectors that represent the sides of triangle PQRPQR.
We can do this by subtracting the coordinates of the vertices.
We'll call these vectors PQ\vec{PQ} and PR\vec{PR}.

STEP 4

**Calculate** PQ\vec{PQ}: PQ=QP=(10,10,10)=(1,1,1) \vec{PQ} = Q - P = (1-0, -1-0, -1-0) = (1, -1, -1)

STEP 5

**Calculate** PR\vec{PR}: PR=RP=(20,10,10)=(2,1,1) \vec{PR} = R - P = (-2-0, 1-0, 1-0) = (-2, 1, 1)

STEP 6

Now, let's **compute** the cross product of PQ\vec{PQ} and PR\vec{PR}, which we'll call N\vec{N}.
The cross product gives us a vector perpendicular to both PQ\vec{PQ} and PR\vec{PR}, and its magnitude is twice the area of the triangle. N=PQ×PR=ijk111211=(0)i(3)j+(1)k=(0,3,1) \vec{N} = \vec{PQ} \times \vec{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & -1 \\ -2 & 1 & 1 \end{vmatrix} = (0)\mathbf{i} - (3)\mathbf{j} + (-1)\mathbf{k} = (0, -3, -1)

STEP 7

The **magnitude** of N\vec{N} is given by: N=02+(3)2+(1)2=0+9+1=10 |\vec{N}| = \sqrt{0^2 + (-3)^2 + (-1)^2} = \sqrt{0 + 9 + 1} = \sqrt{10}

STEP 8

Finally, the **area** of triangle PQRPQR is half the magnitude of the cross product: Area(PQR)=12N=1210 \text{Area}(PQR) = \frac{1}{2} |\vec{N}| = \frac{1}{2} \sqrt{10}

STEP 9

Let's **define** the vectors representing the sides of triangle TUVTUV, TU\vec{TU} and TV\vec{TV}.

STEP 10

**Calculate** TU\vec{TU}: TU=UT=(94,74,71)=(5,3,6) \vec{TU} = U - T = (9-4, 7-4, 7-1) = (5, 3, 6)

STEP 11

**Calculate** TV\vec{TV}: TV=VT=(64,74,11)=(10,3,0) \vec{TV} = V - T = (-6-4, 7-4, 1-1) = (-10, 3, 0)

STEP 12

**Compute** the cross product M=TU×TV\vec{M} = \vec{TU} \times \vec{TV}: M=ijk5361030=(018)i(0+60)j+(15+30)k=(18,60,45) \vec{M} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 5 & 3 & 6 \\ -10 & 3 & 0 \end{vmatrix} = (0-18)\mathbf{i} - (0+60)\mathbf{j} + (15+30)\mathbf{k} = (-18, -60, 45)

STEP 13

**Calculate** the magnitude of M\vec{M}: M=(18)2+(60)2+452=324+3600+2025=5949=3661 |\vec{M}| = \sqrt{(-18)^2 + (-60)^2 + 45^2} = \sqrt{324 + 3600 + 2025} = \sqrt{5949} = 3 \sqrt{661} Since 325.7=77.13 \cdot 25.7 = 77.1 and 66125.7\sqrt{661} \approx 25.7, we have M=77.1|\vec{M}| = 77.1.

STEP 14

The **area** of triangle TUVTUV is: Area(TUV)=12M=123661=32661 \text{Area}(TUV) = \frac{1}{2} |\vec{M}| = \frac{1}{2} \cdot 3\sqrt{661} = \frac{3}{2}\sqrt{661}

STEP 15

Area of triangle PQR=102PQR = \frac{\sqrt{10}}{2}. Area of triangle TUV=36612TUV = \frac{3\sqrt{661}}{2}.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord