Math  /  Geometry

QuestionLas medianas del DEF\triangle D E F son DK,EL\overline{D K}, \overline{E L} y FJ\overline{F J}. Se encuentran en un punto único MM. (En otras palabras, MM es el baricentro del DEF\triangle D E F ). Suponer que ML=9,MJ=8M L=9, M J=8 y DK=24D K=24. Hallar las longitudes siguientes. Observar que la figura no está trazada a escala. FJ=DM=EM=\begin{array}{c} F J= \\ D M= \\ E M= \end{array}

Studdy Solution

STEP 1

1. M M is the centroid (barycenter) of DEF \triangle DEF .
2. The centroid divides each median into a ratio of 2:1 2:1 , with the longer segment being between the vertex and the centroid.
3. Given ML=9 ML = 9 , MJ=8 MJ = 8 , and DK=24 DK = 24 .

STEP 2

1. Use the properties of the centroid to find FJ FJ .
2. Use the properties of the centroid to find DM DM .
3. Use the properties of the centroid to find EM EM .

STEP 3

The centroid M M divides each median into two segments, with the ratio 2:1 2:1 . This means the segment from the vertex to the centroid is twice as long as the segment from the centroid to the midpoint of the opposite side.
For FJ \overline{FJ} , given MJ=8 MJ = 8 , the entire median FJ FJ is:
FJ=3×MJ FJ = 3 \times MJ FJ=3×8=24 FJ = 3 \times 8 = 24

STEP 4

For DK \overline{DK} , given DK=24 DK = 24 , we know DM DM is twice the length of MK MK . Since DK DK is the entire median:
DM=23×DK DM = \frac{2}{3} \times DK DM=23×24=16 DM = \frac{2}{3} \times 24 = 16

STEP 5

For EL \overline{EL} , given ML=9 ML = 9 , the entire median EL EL is:
EL=3×ML EL = 3 \times ML EL=3×9=27 EL = 3 \times 9 = 27
Since EM EM is twice ML ML :
EM=2×ML EM = 2 \times ML EM=2×9=18 EM = 2 \times 9 = 18
The lengths are: FJ=24 FJ = 24 DM=16 DM = 16 EM=18 EM = 18

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord