Math  /  Geometry

QuestionIn parallelogram LMNO, given MP=21 m,LP=(y+3)m,NP=(3y1)m, and P=(2x1)m.\text{In parallelogram } \mathrm{LMNO}, \text{ given } \mathrm{MP}=21 \mathrm{~m}, \mathrm{LP}=(y+3) \mathrm{m}, \mathrm{NP}=(3y-1) \mathrm{m}, \text{ and } P=(2x-1) \mathrm{m}. \text{What are the values of } x \text{ and } y \text{ such that:} \begin{align*} x &= 10 \mathrm{~m}, y = 1 \mathrm{~m} \\ x &= 10 \mathrm{~m}, y = 2 \mathrm{~m} \\ x &= 11 \mathrm{~m}, y = 1 \mathrm{~m} \\ x &= 11 \mathrm{~m}, y = 2 \mathrm{~m} \end{align*}

Studdy Solution

STEP 1

1. The point P P is inside the parallelogram LMNO \mathrm{LMNO} .
2. The segments LP \mathrm{LP} , NP \mathrm{NP} , and OP \mathrm{OP} are given in terms of y y and x x .
3. The length of MP \mathrm{MP} is 21 21 meters.

STEP 2

1. Set up equations based on the given segment lengths.
2. Solve for y y .
3. Solve for x x .
4. Verify solutions with the given options.

STEP 3

Set up equations based on the given segment lengths:
Since MP=21 \mathrm{MP} = 21 m, we have:
MP=LP+NP+OP \mathrm{MP} = \mathrm{LP} + \mathrm{NP} + \mathrm{OP}
Substitute the given expressions:
21=(y+3)+(3y1)+(2x1) 21 = (y + 3) + (3y - 1) + (2x - 1)
Simplify the equation:
21=y+3+3y1+2x1 21 = y + 3 + 3y - 1 + 2x - 1 21=4y+2x+1 21 = 4y + 2x + 1
Rearrange the equation:
20=4y+2x 20 = 4y + 2x

STEP 4

Solve for y y :
Rearrange the equation to express y y in terms of x x :
4y=202x 4y = 20 - 2x y=202x4 y = \frac{20 - 2x}{4} y=5x2 y = 5 - \frac{x}{2}

STEP 5

Solve for x x :
Substitute the values of x x from the options into the equation for y y to find corresponding y y .
Option 1: x=10 x = 10
y=5102 y = 5 - \frac{10}{2} y=55 y = 5 - 5 y=0 y = 0
Option 2: x=11 x = 11
y=5112 y = 5 - \frac{11}{2} y=55.5 y = 5 - 5.5 y=0.5 y = -0.5

STEP 6

Verify solutions with the given options:
The calculated values of y y do not match any of the given options, indicating a possible error in the problem setup or assumptions.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord