Math  /  Algebra

QuestionIf the null space of a 7×57 \times 5 matrix is 4 -dimensional, find rank AA, dimRowA\operatorname{dim} \operatorname{Row} A, and dimColA\operatorname{dim} \operatorname{Col} A. A. rank A=1,dimRowA=4,dimColA=4A=1, \operatorname{dim} \operatorname{Row} A=4, \operatorname{dim} \operatorname{Col} A=4 B. rank A=1,dimRowA=1,dimColA=4A=1, \operatorname{dim} \operatorname{Row} A=1, \operatorname{dim} \operatorname{Col} A=4 C. rank A=3,dimRowA=3,dimColA=3A=3, \operatorname{dim} \operatorname{Row} A=3, \operatorname{dim} \operatorname{Col} A=3 D. rankA=1,dimRowA=1,dimColA=1\operatorname{rank} A=1, \operatorname{dim} \operatorname{Row} A=1, \operatorname{dim} \operatorname{Col} A=1

Studdy Solution

STEP 1

1. The matrix A A is a 7×5 7 \times 5 matrix.
2. The null space of A A is 4-dimensional.
3. The rank-nullity theorem applies, which states that for a matrix A A with n n columns, rank(A)+nullity(A)=n\text{rank}(A) + \text{nullity}(A) = n.

STEP 2

1. Use the rank-nullity theorem to find the rank of A A .
2. Determine dimRowA\operatorname{dim} \operatorname{Row} A.
3. Determine dimColA\operatorname{dim} \operatorname{Col} A.
4. Compare results with the given options.

STEP 3

Apply the rank-nullity theorem. For a 7×5 7 \times 5 matrix A A , the number of columns n=5 n = 5 . The nullity of A A is given as 4. Therefore, we can write:
rank(A)+nullity(A)=n\text{rank}(A) + \text{nullity}(A) = n rank(A)+4=5\text{rank}(A) + 4 = 5
Solve for rank(A)\text{rank}(A):
rank(A)=54=1\text{rank}(A) = 5 - 4 = 1

STEP 4

The dimension of the row space of A A is equal to the rank of A A . Therefore:
dimRowA=rank(A)=1\operatorname{dim} \operatorname{Row} A = \text{rank}(A) = 1

STEP 5

The dimension of the column space of A A is also equal to the rank of A A . Therefore:
dimColA=rank(A)=1\operatorname{dim} \operatorname{Col} A = \text{rank}(A) = 1

STEP 6

Compare the results with the given options:
- rank A=1 A = 1 - dimRowA=1\operatorname{dim} \operatorname{Row} A = 1 - dimColA=1\operatorname{dim} \operatorname{Col} A = 1
The correct option is:
D. rankA=1,dimRowA=1,dimColA=1\operatorname{rank} A=1, \operatorname{dim} \operatorname{Row} A=1, \operatorname{dim} \operatorname{Col} A=1
The correct answer is:
D \boxed{D}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord