Math

QuestionFind limxπ4g(x)\lim _{x \rightarrow \frac{\pi}{4}} g(x) for g(x)=cosxsinx12sin2xg(x)=\frac{\cos x-\sin x}{1-2 \sin ^{2} x}. Options: (A) 0 (B) 12\frac{1}{\sqrt{2}} (C) 2\sqrt{2} (D) Limit does not exist.

Studdy Solution

STEP 1

Assumptions1. The function g(x)g(x) is defined as g(x)=cosxsinx1sinxg(x)=\frac{\cos x-\sin x}{1- \sin ^{} x} . We are asked to find the limit of g(x)g(x) as xx approaches π4\frac{\pi}{4}

STEP 2

First, we substitute x=π4x=\frac{\pi}{4} into the function g(x)g(x).
g(π4)=cosπ4sinπ412sin2π4g\left(\frac{\pi}{4}\right)=\frac{\cos \frac{\pi}{4}-\sin \frac{\pi}{4}}{1-2 \sin ^{2} \frac{\pi}{4}}

STEP 3

We know that cosπ=sinπ=12\cos \frac{\pi}{} = \sin \frac{\pi}{} = \frac{1}{\sqrt{2}}. Substitute these values into the equation.
g(π)=121212(12)2g\left(\frac{\pi}{}\right)=\frac{\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}}{1-2 \left(\frac{1}{\sqrt{2}}\right)^{2}}

STEP 4

implify the numerator and the denominator separately.
g(π4)=012×12g\left(\frac{\pi}{4}\right)=\frac{0}{1-2 \times \frac{1}{2}}

STEP 5

Further simplify the denominator.
g(π4)=011g\left(\frac{\pi}{4}\right)=\frac{0}{1-1}

STEP 6

implify the fraction.
g(π4)=00g\left(\frac{\pi}{4}\right)=\frac{0}{0}This is an indeterminate form, so we need to use L'Hopital's rule to find the limit.

STEP 7

Apply L'Hopital's rule, which states that if the limit of a function is in the form 00\frac{0}{0} or \frac{\infty}{\infty}, then the limit of that function is equal to the limit of the derivative of the numerator divided by the derivative of the denominator.
limxπ4g(x)=limxπ4g(x)h(x)\lim{x \rightarrow \frac{\pi}{4}} g(x) = \lim{x \rightarrow \frac{\pi}{4}} \frac{g'(x)}{h'(x)}where g(x)g'(x) is the derivative of the numerator and h(x)h'(x) is the derivative of the denominator.

STEP 8

Calculate the derivative of the numerator and the denominator.
g(x)=sinxcosxg'(x) = -\sin x - \cos xh(x)=4sinxcosxh'(x) = -4 \sin x \cos x

STEP 9

Substitute the derivatives into the limit.
limxπ4sinxcosx4sinxcosx\lim{x \rightarrow \frac{\pi}{4}} \frac{-\sin x - \cos x}{-4 \sin x \cos x}

STEP 10

Substitute x=π4x=\frac{\pi}{4} into the limit.
limxπ4sinπ4cosπ44sinπ4cosπ4\lim{x \rightarrow \frac{\pi}{4}} \frac{-\sin \frac{\pi}{4} - \cos \frac{\pi}{4}}{-4 \sin \frac{\pi}{4} \cos \frac{\pi}{4}}

STEP 11

Substitute sinπ4=cosπ4=\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{}{\sqrt{}} into the limit.
limxπ44××\lim{x \rightarrow \frac{\pi}{4}} \frac{-\frac{}{\sqrt{}} - \frac{}{\sqrt{}}}{-4 \times \frac{}{\sqrt{}} \times \frac{}{\sqrt{}}}

STEP 12

implify the limit.
limxπ422=2\lim{x \rightarrow \frac{\pi}{4}} \frac{-\sqrt{2}}{-2} = \sqrt{2}So, the limit of g(x)g(x) as xx approaches π4\frac{\pi}{4} is 2\sqrt{2}.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord