Math  /  Algebra

Questionrecelculus Q-s Propertes of matrices w. Ras bave gris
If E=[311331],F=[514133]E=\left[\begin{array}{ccc}-3 & 1 & -1 \\ -3 & 3 & 1\end{array}\right], F=\left[\begin{array}{cc}5 & 1 \\ 4 & -1 \\ -3 & -3\end{array}\right], and G=[5121]G=\left[\begin{array}{cc}-5 & -1 \\ -2 & 1\end{array}\right], is the following statement true or false? E(FG)=(G)FE(F G)=(G) F true false Subm:

Studdy Solution

STEP 1

What is this asking? We need to check if multiplying matrices EE, FF, and GG in two different orders, E(FG)E(FG) and (EF)G(EF)G, gives the same result.
This is about the *associative property* of matrix multiplication. Watch out! Matrix multiplication is *not* always commutative (order matters!), but it *is* associative, meaning we can group the multiplications differently without changing the result.
However, the *dimensions* of the matrices must be compatible for multiplication to even be possible!

STEP 2

1. Calculate FGFG
2. Calculate E(FG)E(FG)
3. Calculate EFEF
4. Calculate (EF)G(EF)G
5. Compare the results

STEP 3

FF is a 3×23 \times 2 matrix and GG is a 2×22 \times 2 matrix.
Since the inner dimensions match (22 and 22), we *can* multiply them, and the result will be a 3×23 \times 2 matrix.

STEP 4

FG=[514133][5121]=[(5)(5)+(1)(2)(5)(1)+(1)(1)(4)(5)+(1)(2)(4)(1)+(1)(1)(3)(5)+(3)(2)(3)(1)+(3)(1)]=[274185210] FG = \begin{bmatrix} 5 & 1 \\ 4 & -1 \\ -3 & -3 \end{bmatrix} \begin{bmatrix} -5 & -1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} (5)(-5) + (1)(-2) & (5)(-1) + (1)(1) \\ (4)(-5) + (-1)(-2) & (4)(-1) + (-1)(1) \\ (-3)(-5) + (-3)(-2) & (-3)(-1) + (-3)(1) \end{bmatrix} = \begin{bmatrix} -27 & -4 \\ -18 & -5 \\ 21 & 0 \end{bmatrix}

STEP 5

EE is a 2×32 \times 3 matrix, and FGFG is a 3×23 \times 2 matrix.
The inner dimensions match (33 and 33), so we can multiply them.
The result will be a 2×22 \times 2 matrix.

STEP 6

E(FG)=[311331][274185210]=[427543]E(FG) = \begin{bmatrix} -3 & 1 & -1 \\ -3 & 3 & 1 \end{bmatrix} \begin{bmatrix} -27 & -4 \\ -18 & -5 \\ 21 & 0 \end{bmatrix} = \begin{bmatrix} 42 & 7 \\ 54 & -3 \end{bmatrix}

STEP 7

EE is a 2×32 \times 3 matrix and FF is a 3×23 \times 2 matrix.
The inner dimensions match (33 and 33), so we can multiply them.
The result will be a 2×22 \times 2 matrix.

STEP 8

EF=[311331][514133]=[(3)(5)+(1)(4)+(1)(3)(3)(1)+(1)(1)+(1)(3)(3)(5)+(3)(4)+(1)(3)(3)(1)+(3)(1)+(1)(3)]=[8169]EF = \begin{bmatrix} -3 & 1 & -1 \\ -3 & 3 & 1 \end{bmatrix} \begin{bmatrix} 5 & 1 \\ 4 & -1 \\ -3 & -3 \end{bmatrix} = \begin{bmatrix} (-3)(5) + (1)(4) + (-1)(-3) & (-3)(1) + (1)(-1) + (-1)(-3) \\ (-3)(5) + (3)(4) + (1)(-3) & (-3)(1) + (3)(-1) + (1)(-3) \end{bmatrix} = \begin{bmatrix} -8 & -1 \\ -6 & -9 \end{bmatrix}

STEP 9

EFEF is a 2×22 \times 2 matrix, and GG is a 2×22 \times 2 matrix.
The inner dimensions match (22 and 22), so we can multiply them.
The result will be a 2×22 \times 2 matrix.

STEP 10

(EF)G=[8169][5121]=[427483](EF)G = \begin{bmatrix} -8 & -1 \\ -6 & -9 \end{bmatrix} \begin{bmatrix} -5 & -1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 42 & 7 \\ 48 & -3 \end{bmatrix}

STEP 11

False.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord