Math  /  Trigonometry

QuestionIf cos2xsin4x=A+Bcos2x+Ccos4x+Dcos2xcos4x\cos ^{2} x \sin ^{4} x=A+B \cos 2 x+C \cos 4 x+D \cos 2 x \cos 4 x then A=A= B=B= C=C= D=D=

Studdy Solution

STEP 1

What is this asking? We need to find the constants *A*, *B*, *C*, and *D* that make this trigonometric equation true for all *x*. Watch out! Remember your double and quadruple angle formulas, and don't mix them up!
Also, be careful with those exponents – they can be tricky!

STEP 2

1. Rewrite the left side using double angle formulas.
2. Expand and simplify the expression.
3. Match coefficients to find *A*, *B*, *C*, and *D*.

STEP 3

Alright, let's **kick things off** by rewriting the left side of the equation.
We know that sin2x=1cos2x2\sin^2 x = \frac{1 - \cos 2x}{2} and cos2x=1+cos2x2\cos^2 x = \frac{1 + \cos 2x}{2}.
This is a great start because we're trying to express everything in terms of cos(2*x*)!

STEP 4

Let's substitute these into our original equation: (1+cos2x2)(1cos2x2)2=A+Bcos2x+Ccos4x+Dcos2xcos4x \left(\frac{1 + \cos 2x}{2}\right) \left(\frac{1 - \cos 2x}{2}\right)^2 = A + B \cos 2x + C \cos 4x + D \cos 2x \cos 4x

STEP 5

Time to **expand** that left side!
It might look a little scary, but we can totally handle it: 18(1+cos2x)(12cos2x+cos22x) \frac{1}{8}(1 + \cos 2x)(1 - 2\cos 2x + \cos^2 2x) =18(12cos2x+cos22x+cos2x2cos22x+cos32x) = \frac{1}{8}(1 - 2\cos 2x + \cos^2 2x + \cos 2x - 2\cos^2 2x + \cos^3 2x) =18(1cos2xcos22x+cos32x) = \frac{1}{8}(1 - \cos 2x - \cos^2 2x + \cos^3 2x)

STEP 6

Now, let's use that double angle formula again, but this time for cos22x\cos^2 2x: cos22x=1+cos4x2\cos^2 2x = \frac{1 + \cos 4x}{2}.
Also, we can rewrite cos32x\cos^3 2x as cos2xcos22x=cos2x(1+cos4x2)\cos 2x \cos^2 2x = \cos 2x \left(\frac{1 + \cos 4x}{2}\right).
Substituting these back in, we get: 18(1cos2x1+cos4x2+cos2x+cos2xcos4x2) \frac{1}{8}\left(1 - \cos 2x - \frac{1 + \cos 4x}{2} + \frac{\cos 2x + \cos 2x \cos 4x}{2}\right)

STEP 7

Let's **simplify** this a bit more: 116(22cos2x1cos4x+cos2x+cos2xcos4x) \frac{1}{16}(2 - 2\cos 2x - 1 - \cos 4x + \cos 2x + \cos 2x \cos 4x) =116(1cos2xcos4x+cos2xcos4x) = \frac{1}{16}(1 - \cos 2x - \cos 4x + \cos 2x \cos 4x)

STEP 8

Now, let's **compare** this with the right side of our original equation: 116(1cos2xcos4x+cos2xcos4x)=A+Bcos2x+Ccos4x+Dcos2xcos4x \frac{1}{16}(1 - \cos 2x - \cos 4x + \cos 2x \cos 4x) = A + B \cos 2x + C \cos 4x + D \cos 2x \cos 4x

STEP 9

By **matching** the coefficients of the corresponding terms, we can see that: A=116A = \frac{1}{16}, B=116B = -\frac{1}{16}, C=116C = -\frac{1}{16}, and D=116D = \frac{1}{16}.

STEP 10

A=116A = \frac{1}{16} B=116B = -\frac{1}{16} C=116C = -\frac{1}{16}D=116D = \frac{1}{16}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord