Math  /  Algebra

Questionh(x)=6x3+19x221x4h(x)=6 x^{3}+19 x^{2}-21 x-4 : Use polynomial division and the quadratic formula, if necessary,

Studdy Solution

STEP 1

What is this asking? Find all the values of xx that make the polynomial h(x)h(x) equal to zero. Watch out! Polynomial division can be tricky, so double-check each step!
Also, remember the quadratic formula has a plus-or-minus, so we might get two answers from that part.

STEP 2

1. Find a root
2. Polynomial Division
3. Quadratic Formula

STEP 3

Let's **test some small values** of xx to see if any of them make h(x)h(x) equal to zero.
Let's try x=2x = 2:
h(2)=6(2)3+19(2)221(2)4 h(2) = 6 \cdot (2)^3 + 19 \cdot (2)^2 - 21 \cdot (2) - 4 h(2)=68+194424 h(2) = 6 \cdot 8 + 19 \cdot 4 - 42 - 4 h(2)=48+76424 h(2) = 48 + 76 - 42 - 4 h(2)=78 h(2) = 78

STEP 4

Hmm, not zero.
Let's try x=4x = -4:
h(4)=6(4)3+19(4)221(4)4 h(-4) = 6 \cdot (-4)^3 + 19 \cdot (-4)^2 - 21 \cdot (-4) - 4 h(4)=6(64)+1916+844 h(-4) = 6 \cdot (-64) + 19 \cdot 16 + 84 - 4 h(4)=384+304+844 h(-4) = -384 + 304 + 84 - 4 h(4)=0 h(-4) = 0 Woohoo! We found one root: x=4x = \mathbf{-4}!

STEP 5

Since x=4x = -4 is a root, we know (x+4)(x+4) must be a factor of h(x)h(x).
Let's use polynomial division to find the other factor.
We're dividing 6x3+19x221x46x^3 + 19x^2 - 21x - 4 by (x+4)(x+4).

STEP 6

After performing the polynomial division, we get 6x25x16x^2 - 5x - 1.
So, we can rewrite h(x)h(x) as:
h(x)=(x+4)(6x25x1) h(x) = (x+4)(6x^2 - 5x - 1)

STEP 7

Now, we need to find the roots of the quadratic 6x25x16x^2 - 5x - 1.
Let's use the **quadratic formula**!
x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} In our case, a=6a = \mathbf{6}, b=5b = \mathbf{-5}, and c=1c = \mathbf{-1}.

STEP 8

**Plugging in the values**:
x=(5)±(5)246(1)26 x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 6 \cdot (-1)}}{2 \cdot 6} x=5±25+2412 x = \frac{5 \pm \sqrt{25 + 24}}{12} x=5±4912 x = \frac{5 \pm \sqrt{49}}{12} x=5±712 x = \frac{5 \pm 7}{12}

STEP 9

This gives us two possible solutions:
x=5+712=1212=1 x = \frac{5 + 7}{12} = \frac{12}{12} = 1 x=5712=212=16 x = \frac{5 - 7}{12} = \frac{-2}{12} = -\frac{1}{6}

STEP 10

The values of xx that make h(x)=0h(x) = 0 are x=4x = \mathbf{-4}, x=1x = \mathbf{1}, and x=1/6x = \mathbf{-1/6}.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord