Math  /  Algebra

QuestionGiven the function f(x)=x216,x0f(x)=x^{2}-16, x \geq 0, complete parts a through cc. (a) Find an equation for f1(x)f^{-1}(x). (b) Graph ff and f1f^{-1} in the same rectangular coordinate system. (c) Use interval notation to give the domain and the range of ff and f1f^{-1}. (a) Find f1(x)\mathrm{f}^{-1}(\mathrm{x}). f1(x)=x+16f^{-1}(x)=\sqrt{x+16} (Type an exact answer, using radicals as needed.) (b) Graph ff and f1\mathrm{f}^{-1} in the same coordinate system. Choose the correct graph below. A. B. C.

Studdy Solution

STEP 1

1. The function f(x)=x216 f(x) = x^2 - 16 is defined for x0 x \geq 0 .
2. We need to find the inverse function f1(x) f^{-1}(x) .
3. We will graph both f(x) f(x) and f1(x) f^{-1}(x) .
4. We will determine the domain and range of both f(x) f(x) and f1(x) f^{-1}(x) .

STEP 2

1. Find the inverse function f1(x) f^{-1}(x) .
2. Graph f(x) f(x) and f1(x) f^{-1}(x) .
3. Determine the domain and range of f(x) f(x) and f1(x) f^{-1}(x) .

STEP 3

To find the inverse function f1(x) f^{-1}(x) , start by setting y=f(x)=x216 y = f(x) = x^2 - 16 .

STEP 4

Solve for x x in terms of y y : y=x216 y = x^2 - 16 y+16=x2 y + 16 = x^2 x=y+16 x = \sqrt{y + 16} Since x0 x \geq 0 , the inverse function is f1(x)=x+16 f^{-1}(x) = \sqrt{x + 16} .

STEP 5

Graph the function f(x)=x216 f(x) = x^2 - 16 for x0 x \geq 0 . This is a parabola opening upwards, starting at the point (0, -16).

STEP 6

Graph the inverse function f1(x)=x+16 f^{-1}(x) = \sqrt{x + 16} . This is a square root function starting at the point (-16, 0) and increasing.

STEP 7

Determine the domain and range of f(x) f(x) : - Domain of f(x) f(x) : [0,) [0, \infty) - Range of f(x) f(x) : [16,) [-16, \infty)

STEP 8

Determine the domain and range of f1(x) f^{-1}(x) : - Domain of f1(x) f^{-1}(x) : [16,) [-16, \infty) - Range of f1(x) f^{-1}(x) : [0,) [0, \infty)
The inverse function is: f1(x)=x+16 f^{-1}(x) = \sqrt{x + 16}
The domain and range are: - Domain of f(x) f(x) : [0,) [0, \infty) - Range of f(x) f(x) : [16,) [-16, \infty) - Domain of f1(x) f^{-1}(x) : [16,) [-16, \infty) - Range of f1(x) f^{-1}(x) : [0,) [0, \infty)

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord