Math  /  Algebra

QuestionGiven the following functions: f(x)=3x2+3x6g(x)=3x+6\begin{array}{l} f(x)=3 x^{2}+3 x-6 \\ g(x)=3 x+6 \end{array}
Find each of the values below. Give exact answers. a. (f+g)(2)=(f+g)(-2)= \square b. (fg)(3)=(f-g)(3)= \square 15 c. (fg)(2)=(f \cdot g)(2)= \square 120 d. (fg)(4)=\left(\frac{f}{g}\right)(4)= \square

Studdy Solution

STEP 1

1. We have two functions: f(x)=3x2+3x6 f(x) = 3x^2 + 3x - 6 and g(x)=3x+6 g(x) = 3x + 6 .
2. We need to find the values of (f+g)(2)(f+g)(-2), (fg)(3)(f-g)(3), (fg)(2)(f \cdot g)(2), and (fg)(4)\left(\frac{f}{g}\right)(4).

STEP 2

1. Calculate (f+g)(2)(f+g)(-2).
2. Calculate (fg)(3)(f-g)(3).
3. Calculate (fg)(2)(f \cdot g)(2).
4. Calculate (fg)(4)\left(\frac{f}{g}\right)(4).

STEP 3

Calculate (f+g)(x)(f+g)(x) by adding the functions:
(f+g)(x)=f(x)+g(x) (f+g)(x) = f(x) + g(x) =(3x2+3x6)+(3x+6) = (3x^2 + 3x - 6) + (3x + 6)

STEP 4

Simplify the expression:
(f+g)(x)=3x2+3x6+3x+6 (f+g)(x) = 3x^2 + 3x - 6 + 3x + 6 =3x2+6x = 3x^2 + 6x

STEP 5

Substitute x=2 x = -2 into (f+g)(x)(f+g)(x):
(f+g)(2)=3(2)2+6(2) (f+g)(-2) = 3(-2)^2 + 6(-2)

STEP 6

Calculate the result:
(f+g)(2)=3(4)12 (f+g)(-2) = 3(4) - 12 =1212 = 12 - 12 =0 = 0

STEP 7

Calculate (fg)(x)(f-g)(x) by subtracting the functions:
(fg)(x)=f(x)g(x) (f-g)(x) = f(x) - g(x) =(3x2+3x6)(3x+6) = (3x^2 + 3x - 6) - (3x + 6)

STEP 8

Simplify the expression:
(fg)(x)=3x2+3x63x6 (f-g)(x) = 3x^2 + 3x - 6 - 3x - 6 =3x212 = 3x^2 - 12

STEP 9

Substitute x=3 x = 3 into (fg)(x)(f-g)(x):
(fg)(3)=3(3)212 (f-g)(3) = 3(3)^2 - 12

STEP 10

Calculate the result:
(fg)(3)=3(9)12 (f-g)(3) = 3(9) - 12 =2712 = 27 - 12 =15 = 15

STEP 11

Calculate (fg)(x)(f \cdot g)(x) by multiplying the functions:
(fg)(x)=f(x)g(x) (f \cdot g)(x) = f(x) \cdot g(x) =(3x2+3x6)(3x+6) = (3x^2 + 3x - 6)(3x + 6)

STEP 12

Substitute x=2 x = 2 into both functions:
f(2)=3(2)2+3(2)6 f(2) = 3(2)^2 + 3(2) - 6 =3(4)+66 = 3(4) + 6 - 6 =12+66 = 12 + 6 - 6 =12 = 12
g(2)=3(2)+6 g(2) = 3(2) + 6 =6+6 = 6 + 6 =12 = 12

STEP 13

Calculate the result:
(fg)(2)=f(2)g(2) (f \cdot g)(2) = f(2) \cdot g(2) =1212 = 12 \cdot 12 =144 = 144

STEP 14

Calculate (fg)(x)\left(\frac{f}{g}\right)(x) by dividing the functions:
(fg)(x)=f(x)g(x) \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}

STEP 15

Substitute x=4 x = 4 into both functions:
f(4)=3(4)2+3(4)6 f(4) = 3(4)^2 + 3(4) - 6 =3(16)+126 = 3(16) + 12 - 6 =48+126 = 48 + 12 - 6 =54 = 54
g(4)=3(4)+6 g(4) = 3(4) + 6 =12+6 = 12 + 6 =18 = 18

STEP 16

Calculate the result:
(fg)(4)=f(4)g(4) \left(\frac{f}{g}\right)(4) = \frac{f(4)}{g(4)} =5418 = \frac{54}{18} =3 = 3
The values are: a. (f+g)(2)=0(f+g)(-2) = 0 b. (fg)(3)=15(f-g)(3) = 15 c. (fg)(2)=144(f \cdot g)(2) = 144 d. (fg)(4)=3\left(\frac{f}{g}\right)(4) = 3

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord