Math

QuestionFind the compositions of the functions: (a) (fg)(x)(f \circ g)(x), (b) (gf)(x)(g \circ f)(x), (c) (ff)(x)(f \circ f)(x), (d) (gg)(x)(g \circ g)(x), where f(x)=x24xf(x)=x^{2}-4 x and g(x)=x4g(x)=x-4.

Studdy Solution

STEP 1

Assumptions1. The function f(x)f(x) is given by f(x)=x4xf(x)=x^{}-4 x . The function g(x)g(x) is given by g(x)=x4g(x)=x-4
3. The composition of functions is defined as (fg)(x)=f(g(x))(f \circ g)(x) = f(g(x)) and (gf)(x)=g(f(x))(g \circ f)(x) = g(f(x))

STEP 2

To find (fg)(x)(f \circ g)(x), we need to substitute g(x)g(x) into f(x)f(x).
(fg)(x)=f(g(x))(f \circ g)(x) = f(g(x))

STEP 3

Substitute g(x)g(x) into f(x)f(x).
(fg)(x)=(g(x))2g(x)(f \circ g)(x) = (g(x))^{2} -g(x)

STEP 4

Substitute x4x-4 for g(x)g(x).
(fg)(x)=(x4)24(x4)(f \circ g)(x) = (x-4)^{2} -4(x-4)

STEP 5

Expand the expression.
(fg)(x)=x28x+164x+16(f \circ g)(x) = x^{2} -8x +16 -4x +16

STEP 6

implify the expression.
(fg)(x)=x212x+32(f \circ g)(x) = x^{2} -12x +32

STEP 7

To find (gf)(x)(g \circ f)(x), we need to substitute f(x)f(x) into g(x)g(x).
(gf)(x)=g(f(x))(g \circ f)(x) = g(f(x))

STEP 8

Substitute f(x)f(x) into g(x)g(x).
(gf)(x)=f(x)4(g \circ f)(x) = f(x) -4

STEP 9

Substitute x24xx^{2}-4x for f(x)f(x).
(gf)(x)=x24x4(g \circ f)(x) = x^{2} -4x -4

STEP 10

To find (ff)(x)(f \circ f)(x), we need to substitute f(x)f(x) into f(x)f(x).
(ff)(x)=f(f(x))(f \circ f)(x) = f(f(x))

STEP 11

Substitute f(x)f(x) into f(x)f(x).
(ff)(x)=(f(x))4f(x)(f \circ f)(x) = (f(x))^{} -4f(x)

STEP 12

Substitute x24xx^{2}-4x for f(x)f(x).
(ff)(x)=(x24x)24(x24x)(f \circ f)(x) = (x^{2}-4x)^{2} -4(x^{2}-4x)

STEP 13

Expand and simplify the expression.
(ff)(x)=x16x3+64x2x2+16x(f \circ f)(x) = x^{} -16x^{3} +64x^{2} -x^{2} +16x

STEP 14

Combine like terms.
(ff)(x)=x416x3+60x2+16x(f \circ f)(x) = x^{4} -16x^{3} +60x^{2} +16x

STEP 15

To find (gg)(x)(g \circ g)(x), we need to substitute g(x)g(x) into g(x)g(x).
(gg)(x)=g(g(x))(g \circ g)(x) = g(g(x))

STEP 16

Substitute g(x)g(x) into g(x)g(x).
(gg)(x)=g(x)4(g \circ g)(x) = g(x) -4

STEP 17

Substitute x4x-4 for g(x)g(x).
(gg)(x)=x44(g \circ g)(x) = x -4 -4

STEP 18

implify the expression.
(gg)(x)=x8(g \circ g)(x) = x -8So, the solutions are(a) (fg)(x)=x212x+32(f \circ g)(x) = x^{2} -12x +32 (b) (gf)(x)=x24x4(g \circ f)(x) = x^{2} -4x -4 (c) (ff)(x)=x416x3+60x2+16x(f \circ f)(x) = x^{4} -16x^{3} +60x^{2} +16x (d) (gg)(x)=x8(g \circ g)(x) = x -8

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord