Math  /  Algebra

Questionf1(x)=x12f^{-1}(x)=\sqrt{\frac{x-1}{2}} is the inverse of f(x)=2x21f(x)=2 x^{2}-1. a) True b) False

Studdy Solution

STEP 1

1. We are given the inverse function f1(x)=x12 f^{-1}(x) = \sqrt{\frac{x-1}{2}} .
2. We need to verify if f(x)=2x21 f(x) = 2x^2 - 1 is the function whose inverse is given.
3. For f1(x) f^{-1}(x) to be the correct inverse, f(f1(x)) f(f^{-1}(x)) should equal x x and f1(f(x)) f^{-1}(f(x)) should equal x x .

STEP 2

1. Verify if applying f f to f1(x) f^{-1}(x) yields x x .
2. Verify if applying f1 f^{-1} to f(x) f(x) yields x x .

STEP 3

Define the function and its claimed inverse:
f(x)=2x21andf1(x)=x12f(x) = 2x^2 - 1 \quad \text{and} \quad f^{-1}(x) = \sqrt{\frac{x-1}{2}}

STEP 4

Apply the function f f to its claimed inverse f1(x) f^{-1}(x) :
f(f1(x))=f(x12)f(f^{-1}(x)) = f\left(\sqrt{\frac{x-1}{2}}\right)

STEP 5

Substitute x12 \sqrt{\frac{x-1}{2}} into f(x) f(x) :
f(x12)=2(x12)21f\left(\sqrt{\frac{x-1}{2}}\right) = 2\left(\sqrt{\frac{x-1}{2}}\right)^2 - 1

STEP 6

Simplify the expression:
2(x12)1=x12\left(\frac{x-1}{2}\right) - 1 = x - 1

STEP 7

Verify if the result is x x :
x1+1=xx - 1 + 1 = x
This confirms that f(f1(x))=x f(f^{-1}(x)) = x .

STEP 8

Apply the inverse function f1 f^{-1} to f(x) f(x) :
f1(f(x))=f1(2x21)f^{-1}(f(x)) = f^{-1}(2x^2 - 1)

STEP 9

Substitute 2x21 2x^2 - 1 into f1(x) f^{-1}(x) :
f1(2x21)=2x2112f^{-1}(2x^2 - 1) = \sqrt{\frac{2x^2 - 1 - 1}{2}}

STEP 10

Simplify the expression:
2x222=x2=x\sqrt{\frac{2x^2 - 2}{2}} = \sqrt{x^2} = |x|

STEP 11

Verify if the result is x x :
Since the inverse function should return x x itself, and we obtained x |x| , this indicates that f1(f(x))=x f^{-1}(f(x)) = |x| .
Given the absolute value, f1(x)=x12 f^{-1}(x) = \sqrt{\frac{x-1}{2}} is not the true inverse of f(x)=2x21 f(x) = 2x^2 - 1 for all x x .
Therefore, the statement is:
False\boxed{\text{False}}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord