Math  /  Calculus

Questionf(x)={4πx<000x<πf(x) = \begin{cases} 4 & -\pi \le x < 0 \\ 0 & 0 \le x < \pi \end{cases}
A. f(x)=2+83πsinx+8πcos3x+f(x) = 2 + \frac{8}{3\pi}\sin x + \frac{8}{\pi}\cos 3x + \dots B. f(x)=28πcosx83πcos3xf(x) = 2 - \frac{8}{\pi}\cos x - \frac{8}{3\pi}\cos 3x - \dots C. f(x)=28πsinx83πsin3xf(x) = 2 - \frac{8}{\pi}\sin x - \frac{8}{3\pi}\sin 3x - \dots D. f(x)=2+8πcosx+83πcos3x+8πsinx83πsin3xf(x) = 2 + \frac{8}{\pi}\cos x + \frac{8}{3\pi}\cos 3x + \dots - \frac{8}{\pi}\sin x - \frac{8}{3\pi}\sin 3x - \dots
Which of the following graphs shows three periods of the function?

Studdy Solution

STEP 1

What is this asking? We need to find the first few terms of the *Fourier series* for a *piecewise function* and then pick the graph that shows three periods of this function. Watch out! The function is defined piecewise, so we need to be careful with the integration limits when calculating the Fourier coefficients.
Also, remember that the Fourier series approximates a periodic function, so we need to consider the periodic extension of the given function.

STEP 2

1. Define the function
2. Calculate a0a_0
3. Calculate ana_n
4. Calculate bnb_n
5. Optimize the formula
6. Sketch the graph

STEP 3

Our function f(x)f(x) is defined as: f(x)={4,πx<00,0x<π f(x) = \begin{cases} 4, & -\pi \le x < 0 \\ 0, & 0 \le x < \pi \end{cases} This function has a period of 2π2\pi.

STEP 4

The formula for a0a_0 is: a0=1πππf(x)dx a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx

STEP 5

Since f(x)f(x) is piecewise, we split the integral: a0=1π(π04dx+0π0dx) a_0 = \frac{1}{\pi} \left( \int_{-\pi}^{0} 4 \, dx + \int_{0}^{\pi} 0 \, dx \right)

STEP 6

The second integral is zero, and the first integral is easy: a0=1π[4x]π0=1π(404(π))=4ππ=4 a_0 = \frac{1}{\pi} \left[ 4x \right]_{-\pi}^{0} = \frac{1}{\pi} (4 \cdot 0 - 4 \cdot (-\pi)) = \frac{4\pi}{\pi} = 4 So, a0=4a_0 = \textbf{4}.

STEP 7

The formula for ana_n is: an=1πππf(x)cos(nx)dx a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx

STEP 8

Again, we split the integral: an=1π(π04cos(nx)dx+0π0cos(nx)dx) a_n = \frac{1}{\pi} \left( \int_{-\pi}^{0} 4 \cos(nx) \, dx + \int_{0}^{\pi} 0 \cdot \cos(nx) \, dx \right)

STEP 9

The second integral is zero.
For the first integral: an=4π[sin(nx)n]π0=4nπ(sin(0)sin(nπ))=4nπ(00)=0 a_n = \frac{4}{\pi} \left[ \frac{\sin(nx)}{n} \right]_{-\pi}^{0} = \frac{4}{n\pi} (\sin(0) - \sin(-n\pi)) = \frac{4}{n\pi} (0 - 0) = 0 So, an=0a_n = \textbf{0} for all n>0n > 0.

STEP 10

The formula for bnb_n is: bn=1πππf(x)sin(nx)dx b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, dx

STEP 11

Splitting the integral: bn=1π(π04sin(nx)dx+0π0sin(nx)dx) b_n = \frac{1}{\pi} \left( \int_{-\pi}^{0} 4 \sin(nx) \, dx + \int_{0}^{\pi} 0 \cdot \sin(nx) \, dx \right)

STEP 12

The second integral is zero.
For the first integral: bn=4π[cos(nx)n]π0=4nπ(cos(0)cos(nπ))=4nπ(1cos(nπ)) b_n = \frac{4}{\pi} \left[ -\frac{\cos(nx)}{n} \right]_{-\pi}^{0} = \frac{-4}{n\pi} (\cos(0) - \cos(-n\pi)) = \frac{-4}{n\pi} (1 - \cos(n\pi)) Since cos(nπ)=(1)n\cos(n\pi) = (-1)^n, we have 1cos(nπ)=1(1)n1 - \cos(n\pi) = 1 - (-1)^n.

STEP 13

Putting it all together, the Fourier series is: f(x)=a02+n=1(ancos(nx)+bnsin(nx)) f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)) f(x)=42+n=1(0cos(nx)+4(1(1)n)nπsin(nx))=24πn=11(1)nnsin(nx) f(x) = \frac{4}{2} + \sum_{n=1}^{\infty} \left(0 \cdot \cos(nx) + \frac{-4(1 - (-1)^n)}{n\pi} \sin(nx) \right) = 2 - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n} \sin(nx)

STEP 14

The first three non-zero terms are: f(x)28πsin(x)83πsin(3x) f(x) \approx 2 - \frac{8}{\pi} \sin(x) - \frac{8}{3\pi} \sin(3x) - \dots

STEP 15

The graph will be a square wave oscillating between 0 and 4, centered at 2, with a period of 2π2\pi.

STEP 16

The Fourier series is approximately f(x)=28πsin(x)83πsin(3x)+f(x) = 2 - \frac{8}{\pi}\sin(x) - \frac{8}{3\pi}\sin(3x) + \dots and the correct graph is **C**.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord