Math  /  Algebra

QuestionFunction AA and Function BB are linear functions.
Function A
Function B \begin{tabular}{|c|c|} \hlinexx & yy \\ \hline 3 & 2 \\ \hline 6 & 3 \\ \hline 9 & 4 \\ \hline \end{tabular}

Studdy Solution

STEP 1

1. Function A A is a linear function with a line passing through the points (10,10)(-10, -10) and (10,10) (10, 10) .
2. Function B B is a linear function with given points (3,2)(3, 2), (6,3)(6, 3), and (9,4)(9, 4).
3. We need to determine the equations of both linear functions.

STEP 2

1. Determine the equation of Function A A .
2. Determine the equation of Function B B .

STEP 3

To find the equation of Function A A , use the two points (10,10)(-10, -10) and (10,10) (10, 10) .
Calculate the slope m m using the formula: m=y2y1x2x1 m = \frac{y_2 - y_1}{x_2 - x_1}
Substitute the points: m=10(10)10(10)=2020=1 m = \frac{10 - (-10)}{10 - (-10)} = \frac{20}{20} = 1

STEP 4

With the slope m=1 m = 1 , use the point-slope form yy1=m(xx1) y - y_1 = m(x - x_1) with point (10,10)(-10, -10):
y(10)=1(x(10)) y - (-10) = 1(x - (-10))
Simplify to get the equation of Function A A : y+10=x+10 y + 10 = x + 10 y=x y = x

STEP 5

To find the equation of Function B B , use the points (3,2)(3, 2) and (6,3)(6, 3).
Calculate the slope m m using the formula: m=y2y1x2x1 m = \frac{y_2 - y_1}{x_2 - x_1}
Substitute the points: m=3263=13 m = \frac{3 - 2}{6 - 3} = \frac{1}{3}

STEP 6

With the slope m=13 m = \frac{1}{3} , use the point-slope form yy1=m(xx1) y - y_1 = m(x - x_1) with point (3,2)(3, 2):
y2=13(x3) y - 2 = \frac{1}{3}(x - 3)
Simplify to get the equation of Function B B : y2=13x1 y - 2 = \frac{1}{3}x - 1 y=13x+1 y = \frac{1}{3}x + 1
The equations of the functions are: - Function A A : y=x y = x - Function B B : y=13x+1 y = \frac{1}{3}x + 1

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord