Solve a problem of your own!
Download the Studdy App!

Math

Math Snap

PROBLEM

For the function f(x)=x52f(x)=\sqrt[5]{x}-2, find f1(x)f^{-1}(x).

STEP 1

1. We are given the function f(x)=x52 f(x) = \sqrt[5]{x} - 2 .
2. We need to find the inverse function f1(x) f^{-1}(x) .

STEP 2

1. Set y=f(x) y = f(x) and express it in terms of x x .
2. Solve for x x in terms of y y .
3. Swap x x and y y to find f1(x) f^{-1}(x) .
4. Verify the inverse function.

STEP 3

Set y=f(x) y = f(x) :
y=x52 y = \sqrt[5]{x} - 2

STEP 4

Solve for x x in terms of y y :
First, isolate the radical term:
y+2=x5 y + 2 = \sqrt[5]{x} Next, eliminate the fifth root by raising both sides to the power of 5:
(y+2)5=x (y + 2)^5 = x

STEP 5

Swap x x and y y to find the inverse function:
f1(x)=(x+2)5 f^{-1}(x) = (x + 2)^5

SOLUTION

Verify the inverse function by checking if f(f1(x))=x f(f^{-1}(x)) = x and f1(f(x))=x f^{-1}(f(x)) = x .
First, check f(f1(x)) f(f^{-1}(x)) :
f(f1(x))=f((x+2)5)=(x+2)552=x+22=x f(f^{-1}(x)) = f((x + 2)^5) = \sqrt[5]{(x + 2)^5} - 2 = x + 2 - 2 = x Next, check f1(f(x)) f^{-1}(f(x)) :
f1(f(x))=f1(x52)=((x52)+2)5=(x5)5=x f^{-1}(f(x)) = f^{-1}(\sqrt[5]{x} - 2) = ((\sqrt[5]{x} - 2) + 2)^5 = (\sqrt[5]{x})^5 = x Both conditions are satisfied, confirming the inverse.
The inverse function is:
f1(x)=(x+2)5 f^{-1}(x) = (x + 2)^5

Was this helpful?
banner

Start understanding anything

Get started now for free.

OverviewParentsContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord