Solve a problem of your own! Download the Studdy App!
Math Snap
PROBLEM
For the function f(x)=5x−2, find f−1(x).
STEP 1
1. We are given the function f(x)=5x−2. 2. We need to find the inverse function f−1(x).
STEP 2
1. Set y=f(x) and express it in terms of x. 2. Solve for x in terms of y. 3. Swap x and y to find f−1(x). 4. Verify the inverse function.
STEP 3
Set y=f(x): y=5x−2
STEP 4
Solve for x in terms of y: First, isolate the radical term: y+2=5xNext, eliminate the fifth root by raising both sides to the power of 5: (y+2)5=x
STEP 5
Swap x and y to find the inverse function: f−1(x)=(x+2)5
SOLUTION
Verify the inverse function by checking if f(f−1(x))=x and f−1(f(x))=x. First, check f(f−1(x)): f(f−1(x))=f((x+2)5)=5(x+2)5−2=x+2−2=xNext, check f−1(f(x)): f−1(f(x))=f−1(5x−2)=((5x−2)+2)5=(5x)5=xBoth conditions are satisfied, confirming the inverse. The inverse function is: f−1(x)=(x+2)5