Math  /  Algebra

QuestionFor the demand equation p=14004qp=1400-4 q, verify that demand is elastic and total revenue is increasing for 0<q<1750<q<175. Verify that demand is inelastic and total revenue is decreasing for 175<q<350175<q<350.
Begin by finding η\eta in terms of qq. The formula for η\eta is η=pqdqdp\eta=\frac{p}{q} \cdot \frac{d q}{d p}. Since p=14004q,dqdp=p=1400-4 q, \frac{d q}{d p}= \square (Simplify your answer.)

Studdy Solution

STEP 1

1. The demand equation is given by p=14004q p = 1400 - 4q .
2. Elasticity of demand, η\eta, is defined as η=pqdqdp\eta = \frac{p}{q} \cdot \frac{dq}{dp}.
3. We need to find dqdp\frac{dq}{dp} using the given demand equation.
4. We will verify elasticity and total revenue behavior in specified intervals of q q .

STEP 2

1. Find dqdp\frac{dq}{dp}.
2. Express η\eta in terms of q q .
3. Verify elasticity and total revenue for 0<q<175 0 < q < 175 .
4. Verify elasticity and total revenue for 175<q<350 175 < q < 350 .

STEP 3

To find dqdp\frac{dq}{dp}, we first need to express q q in terms of p p from the demand equation p=14004q p = 1400 - 4q .
Rearrange the equation:
4q=1400p 4q = 1400 - p q=1400p4 q = \frac{1400 - p}{4}
Now differentiate q q with respect to p p :
dqdp=ddp(1400p4)=14 \frac{dq}{dp} = \frac{d}{dp} \left( \frac{1400 - p}{4} \right) = -\frac{1}{4}

STEP 4

Substitute dqdp=14\frac{dq}{dp} = -\frac{1}{4} into the formula for η\eta:
η=pq(14) \eta = \frac{p}{q} \cdot \left(-\frac{1}{4}\right)
Substitute p=14004q p = 1400 - 4q into the expression:
η=14004qq(14) \eta = \frac{1400 - 4q}{q} \cdot \left(-\frac{1}{4}\right)
Simplify:
η=14004q4q=14004q+1 \eta = -\frac{1400 - 4q}{4q} = -\frac{1400}{4q} + 1 η=350q+1 \eta = -\frac{350}{q} + 1

STEP 5

Verify elasticity and total revenue for 0<q<175 0 < q < 175 :
For demand to be elastic, η>1|\eta| > 1.
350q+1>1 \left| -\frac{350}{q} + 1 \right| > 1
Solve the inequality:
350q+1>1 \left| -\frac{350}{q} + 1 \right| > 1 350q>0 \left| -\frac{350}{q} \right| > 0 350q>2 \frac{350}{q} > 2
Solve for q q :
350>2q 350 > 2q q<175 q < 175
This confirms that demand is elastic for 0<q<175 0 < q < 175 .
Total revenue R=pq=(14004q)q R = p \cdot q = (1400 - 4q)q .
Differentiate R R with respect to q q :
dRdq=14008q \frac{dR}{dq} = 1400 - 8q
For 0<q<175 0 < q < 175 , 14008q>0 1400 - 8q > 0 , so total revenue is increasing.

STEP 6

Verify elasticity and total revenue for 175<q<350 175 < q < 350 :
For demand to be inelastic, η<1|\eta| < 1.
350q+1<1 \left| -\frac{350}{q} + 1 \right| < 1
Solve the inequality:
350q<2 \frac{350}{q} < 2
Solve for q q :
350<2q 350 < 2q q>175 q > 175
This confirms that demand is inelastic for 175<q<350 175 < q < 350 .
For 175<q<350 175 < q < 350 , 14008q<0 1400 - 8q < 0 , so total revenue is decreasing.
The demand is elastic and total revenue is increasing for 0<q<175 0 < q < 175 . The demand is inelastic and total revenue is decreasing for 175<q<350 175 < q < 350 .

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord