Math  /  Algebra

QuestionFor f(x)=2x4f(x)=2 x-4 and g(x)=2x21g(x)=2 x^{2}-1, find the following functions. a. (fg)(x);b(gf)(x);c(fg)(1);d.(gf)(1)(f \circ g)(x) ; b \cdot(g \circ f)(x) ; c \cdot(f \circ g)(-1) ; d .(g \circ f)(-1) a. (fg)(x)=(f \circ g)(x)= \square (Simplify your answer.)

Studdy Solution

STEP 1

1. The composition of functions involves substituting one function into another.
2. The notation (fg)(x)(f \circ g)(x) represents the composition f(g(x))f(g(x)).
3. The functions given are f(x)=2x4f(x) = 2x - 4 and g(x)=2x21g(x) = 2x^2 - 1.
4. We are required to find and simplify the compositions of these functions.

STEP 2

1. Compute (fg)(x)(f \circ g)(x).
2. Compute (gf)(x)(g \circ f)(x).
3. Evaluate (fg)(1)(f \circ g)(-1).
4. Evaluate (gf)(1)(g \circ f)(-1).

STEP 3

Compute (fg)(x)=f(g(x))(f \circ g)(x) = f(g(x)).
First, substitute g(x)g(x) into f(x)f(x): f(g(x))=f(2x21)f(g(x)) = f(2x^2 - 1)

STEP 4

Apply the function ff to g(x)=2x21g(x) = 2x^2 - 1.
f(2x21)=2(2x21)4f(2x^2 - 1) = 2(2x^2 - 1) - 4

STEP 5

Simplify the expression:
f(2x21)=4x224=4x26f(2x^2 - 1) = 4x^2 - 2 - 4 = 4x^2 - 6
Therefore: (fg)(x)=4x26(f \circ g)(x) = 4x^2 - 6

STEP 6

Compute (gf)(x)=g(f(x))(g \circ f)(x) = g(f(x)).
First, substitute f(x)f(x) into g(x)g(x): g(f(x))=g(2x4)g(f(x)) = g(2x - 4)

STEP 7

Apply the function gg to f(x)=2x4f(x) = 2x - 4.
g(2x4)=2(2x4)21g(2x - 4) = 2(2x - 4)^2 - 1

STEP 8

Simplify the expression inside the function gg.
g(2x4)=2(4x216x+16)1=8x232x+321g(2x - 4) = 2(4x^2 - 16x + 16) - 1 = 8x^2 - 32x + 32 - 1
Therefore: (gf)(x)=8x232x+31(g \circ f)(x) = 8x^2 - 32x + 31

STEP 9

Evaluate (fg)(1)(f \circ g)(-1).
Substitute x=1x = -1 into (fg)(x)=4x26(f \circ g)(x) = 4x^2 - 6: (fg)(1)=4(1)26=46=2(f \circ g)(-1) = 4(-1)^2 - 6 = 4 - 6 = -2

STEP 10

Evaluate (gf)(1)(g \circ f)(-1).
Substitute x=1x = -1 into (gf)(x)=8x232x+31(g \circ f)(x) = 8x^2 - 32x + 31: (gf)(1)=8(1)232(1)+31=8+32+31=71(g \circ f)(-1) = 8(-1)^2 - 32(-1) + 31 = 8 + 32 + 31 = 71
Solution:
a. (fg)(x)=4x26 (f \circ g)(x) = 4x^2 - 6
b. (gf)(x)=8x232x+31 (g \circ f)(x) = 8x^2 - 32x + 31
c. (fg)(1)=2 (f \circ g)(-1) = -2
d. (gf)(1)=71 (g \circ f)(-1) = 71

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord