Math

QuestionFind the vectors PQundefined\overrightarrow{P Q} and PRundefined\overrightarrow{P R} for points P(2,1)P(-2,1), Q(5,3)Q(5,3), and R(x,y)R(x,y).

Studdy Solution

STEP 1

Assumptions1. Points, Q, and R are in the same plane. .(-,1), Q(5,3) are given points.
3. R(x, y) is an arbitrary point.

STEP 2

First, we need to find the vector Qundefined\overrightarrow{ Q}. The formula to find the vector from point to point Q is given byQundefined=Q\overrightarrow{ Q} = Q -

STEP 3

Now, plug in the given values for points and Q to calculate the vector Qundefined\overrightarrow{ Q}.
Qundefined=Q=(5,3)(2,1)\overrightarrow{ Q} = Q - = (5,3) - (-2,1)

STEP 4

Perform the subtraction operation to find the vector Qundefined\overrightarrow{ Q}.
Qundefined=((2),31)=(7,2)\overrightarrow{ Q} = (-(-2),3-1) = (7,2)

STEP 5

Now, we need to find the vector Rundefined\overrightarrow{ R}. The formula to find the vector from point to point R is given byRundefined=R\overrightarrow{ R} = R -

STEP 6

Plug in the given values for points and R to calculate the vector Rundefined\overrightarrow{ R}.
Rundefined=R=(x,y)(2,1)\overrightarrow{ R} = R - = (x,y) - (-2,1)

STEP 7

Perform the subtraction operation to find the vector Rundefined\overrightarrow{ R}.
Rundefined=(x(2),y1)=(x+2,y1)\overrightarrow{ R} = (x-(-2), y-1) = (x+2, y-1)So, the vectors Qundefined\overrightarrow{ Q} and Rundefined\overrightarrow{ R} are (7,2) and (x+2, y-1) respectively.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord