Math

QuestionFind the sums, differences, products, and quotients of the following functions:
1. f(x)=3x+4,g(x)=2x1f(x)=3x+4, g(x)=2x-1
2. f(x)=2x5,g(x)=4x2f(x)=2x-5, g(x)=4x^2
3. f(x)=x4,g(x)=xf(x)=x-4, g(x)=\sqrt{x}

Studdy Solution

STEP 1

Assumptions1. The functions are f(x)=3x+4f(x)=3x+4 and g(x)=x1g(x)=x-1 for the first part, f(x)=x5f(x)=x-5 and g(x)=4xg(x)=4x^{} for the second part, and f(x)=x4f(x)=x-4 and g(x)=xg(x)=\sqrt{x} for the third part. . The operations to be performed are addition, subtraction, multiplication, and division of functions.

STEP 2

First, we will find (f+g)(x)(f+g)(x) for the first part. This is done by adding the two functions together.
(f+g)(x)=f(x)+g(x)(f+g)(x) = f(x) + g(x)

STEP 3

Plug in the functions f(x)f(x) and g(x)g(x) to calculate (f+g)(x)(f+g)(x).
(f+g)(x)=(3x+)+(2x1)(f+g)(x) = (3x+) + (2x-1)

STEP 4

implify the expression to find (f+g)(x)(f+g)(x).
(f+g)(x)=x+3(f+g)(x) =x +3

STEP 5

Now, we will find (fg)(x)(f-g)(x) for the first part. This is done by subtracting g(x)g(x) from f(x)f(x).
(fg)(x)=f(x)g(x)(f-g)(x) = f(x) - g(x)

STEP 6

Plug in the functions f(x)f(x) and g(x)g(x) to calculate (fg)(x)(f-g)(x).
(fg)(x)=(3x+4)(2x1)(f-g)(x) = (3x+4) - (2x-1)

STEP 7

implify the expression to find (fg)(x)(f-g)(x).
(fg)(x)=x+5(f-g)(x) = x +5

STEP 8

Next, we will find (fg)(x)(fg)(x) for the first part. This is done by multiplying f(x)f(x) and g(x)g(x).
(fg)(x)=f(x)g(x)(fg)(x) = f(x) \cdot g(x)

STEP 9

Plug in the functions f(x)f(x) and g(x)g(x) to calculate (fg)(x)(fg)(x).
(fg)(x)=(3x+4)(2x)(fg)(x) = (3x+4) \cdot (2x-)

STEP 10

Expand the expression to find (fg)(x)(fg)(x).
(fg)(x)=6x23x+8x4=6x2+5x4(fg)(x) =6x^{2} -3x +8x -4 =6x^{2} +5x -4

STEP 11

Lastly, we will find (fg)(x)\left(\frac{f}{g}\right)(x) for the first part. This is done by dividing f(x)f(x) by g(x)g(x).
(fg)(x)=f(x)g(x)\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}

STEP 12

Plug in the functions f(x)f(x) and g(x)g(x) to calculate (fg)(x)\left(\frac{f}{g}\right)(x).
(fg)(x)=x+42x\left(\frac{f}{g}\right)(x) = \frac{x+4}{2x-}

STEP 13

We will repeat the steps2-12 for the second and third parts with the respective functions.
For the second part, we have(f+g)(x)=2x5+x2=x2+2x5(f+g)(x) =2x -5 +x^{2} =x^{2} +2x -5(fg)(x)=2x5x2=x2+2x5(f-g)(x) =2x -5 -x^{2} = -x^{2} +2x -5(fg)(x) = (2x -5) \cdotx^{2} =8x^{3} -20x^{2}(fg)(x)=2x5x2=2x5x2\left(\frac{f}{g}\right)(x) = \frac{2x -5}{x^{2}} = \frac{}{2x} - \frac{5}{x^{2}}For the third part, we have(f+g)(x)=x+x=x+x(f+g)(x) = x - + \sqrt{x} = \sqrt{x} + x -(fg)(x)=xx=x+x(f-g)(x) = x - - \sqrt{x} = -\sqrt{x} + x -(fg)(x)=(x)x=xxx(fg)(x) = (x -) \cdot \sqrt{x} = x\sqrt{x} -\sqrt{x}(fg)(x)=xx=xx\left(\frac{f}{g}\right)(x) = \frac{x -}{\sqrt{x}} = \sqrt{x} - \frac{}{\sqrt{x}}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord