Math  /  Trigonometry

QuestionFind the polar coordinates, 0θ<2π0 \leq \theta<2 \pi and r0r \geq 0, of the point given in Cartesian A) (42,3π4)\left(4 \sqrt{2}, \frac{3 \pi}{4}\right) B) (42,7π4)\left(4 \sqrt{2}, \frac{7 \pi}{4}\right) coordinates. (4,4)(4,-4) C) (42,π4)\left(4 \sqrt{2}, \frac{\pi}{4}\right) D) (42,5π4)\left(4 \sqrt{2}, \frac{5 \pi}{4}\right)

Studdy Solution

STEP 1

1. Polar coordinates are given by (r,θ)(r, \theta), where rr is the radial distance from the origin and θ\theta is the angle measured from the positive x-axis.
2. Cartesian coordinates are given by (x,y)(x, y).
3. The conversion formulas from Cartesian to polar coordinates are: - r=x2+y2 r = \sqrt{x^2 + y^2} - θ=tan1(yx) \theta = \tan^{-1}\left(\frac{y}{x}\right)
4. Adjust θ\theta to ensure 0θ<2π0 \leq \theta < 2\pi.

STEP 2

1. Verify the Cartesian coordinates.
2. Convert Cartesian coordinates to polar coordinates.
3. Adjust θ\theta if necessary to ensure it lies within the specified range.

STEP 3

Verify the Cartesian coordinates provided in the options. Note that the given Cartesian coordinates for the point are (4,4)(4, -4).

STEP 4

Calculate the radial distance rr using the formula r=x2+y2 r = \sqrt{x^2 + y^2} .
x=4,y=4 x = 4, \quad y = -4 r=42+(4)2 r = \sqrt{4^2 + (-4)^2} r=16+16 r = \sqrt{16 + 16} r=32 r = \sqrt{32} r=42 r = 4\sqrt{2}

STEP 5

Calculate the angle θ\theta using the formula θ=tan1(yx)\theta = \tan^{-1}\left(\frac{y}{x}\right).
θ=tan1(44) \theta = \tan^{-1}\left(\frac{-4}{4}\right) θ=tan1(1) \theta = \tan^{-1}(-1) θ=π4 \theta = -\frac{\pi}{4}

STEP 6

Adjust θ\theta to ensure it lies within the range 0θ<2π0 \leq \theta < 2\pi.
Since θ=π4\theta = -\frac{\pi}{4} is negative, add 2π2\pi to adjust:
θ=π4+2π \theta = -\frac{\pi}{4} + 2\pi θ=7π4 \theta = \frac{7\pi}{4}
The polar coordinates of the point (4,4)(4, -4) are:
(42,7π4) \boxed{\left(4\sqrt{2}, \frac{7\pi}{4}\right)}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord