Math

QuestionFind (gfh)(x)(g \circ f \circ h)(x) for f(x)=4x8f(x)=4x-8, g(x)=x4g(x)=x^4, and h(x)=x5h(x)=\sqrt[5]{x}.

Studdy Solution

STEP 1

Assumptions1. The function f(x)=4x8f(x)=4x-8 . The function g(x)=x4g(x)=x^{4}
3. The function h(x)=x5h(x)=\sqrt[5]{x}
4. The operation (gfh)(x)(g \circ f \circ h)(x) represents function composition, which means that the output of one function becomes the input of the next function.

STEP 2

We start by finding f(h(x))f(h(x)). We substitute h(x)h(x) into the function f(x)f(x).
f(h(x))=4h(x)8f(h(x)) =4h(x) -8

STEP 3

Now, substitute the actual function of h(x)h(x) into the equation.
f(h(x))=x58f(h(x)) =\sqrt[5]{x} -8

STEP 4

Now, we need to find (gfh)(x)(g \circ f \circ h)(x), which means we substitute f(h(x))f(h(x)) into the function g(x)g(x).
g(f(h(x)))=(4x8)4g(f(h(x))) = (4\sqrt[]{x} -8)^{4}

STEP 5

This is the final step, where we have found the function (gfh)(x)(g \circ f \circ h)(x).
So, (gfh)(x)=(4x58)4(g \circ f \circ h)(x) = (4\sqrt[5]{x} -8)^{4}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord