Math  /  Calculus

QuestionFind the follow
2. limx0x21cos(3x)\lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos (3 x)}

Studdy Solution

STEP 1

What is this asking? We need to find the limit of a fraction involving x2x^2 and 1cos(3x)1 - \cos(3x) as xx approaches 0. Watch out! Direct substitution gives us 00\frac{0}{0}, which is an indeterminate form.
We'll need a clever trick to evaluate this limit!

STEP 2

1. Rewrite using a trig identity
2. Simplify the expression
3. Evaluate the limit

STEP 3

Let's recall the half-angle identity: cos(2θ)=12sin2(θ) \cos(2\theta) = 1 - 2\sin^2(\theta) We can rewrite this as: 2sin2(θ)=1cos(2θ) 2\sin^2(\theta) = 1 - \cos(2\theta) We want something that looks like 1cos(3x)1 - \cos(3x), so let's set 2θ=3x2\theta = 3x, which means θ=3x2\theta = \frac{3x}{2}.
Substituting, we get: 2sin2(3x2)=1cos(3x) 2\sin^2\left(\frac{3x}{2}\right) = 1 - \cos(3x) Now we have a shiny new way to express 1cos(3x)1 - \cos(3x)!

STEP 4

Let's substitute this into our original expression: limx0x21cos(3x)=limx0x22sin2(3x2) \lim_{x \rightarrow 0} \frac{x^2}{1 - \cos(3x)} = \lim_{x \rightarrow 0} \frac{x^2}{2\sin^2\left(\frac{3x}{2}\right)} Much better!

STEP 5

We know that limu0sin(u)u=1\lim_{u \rightarrow 0} \frac{\sin(u)}{u} = 1.
We want to use this, so let's rewrite our expression: limx0x22sin2(3x2)=limx012x2sin2(3x2) \lim_{x \rightarrow 0} \frac{x^2}{2\sin^2\left(\frac{3x}{2}\right)} = \lim_{x \rightarrow 0} \frac{1}{2} \cdot \frac{x^2}{\sin^2\left(\frac{3x}{2}\right)} We can further rewrite this as: limx012(xsin(3x2))2 \lim_{x \rightarrow 0} \frac{1}{2} \cdot \left(\frac{x}{\sin\left(\frac{3x}{2}\right)}\right)^2

STEP 6

To make it look even *more* like our limit identity, let's multiply by (3/2)2(3/2)2\frac{(3/2)^2}{(3/2)^2} (which is the same as multiplying by one!): limx012(32x32sin(3x2))2=limx012(23)2(3x2sin(3x2))2 \lim_{x \rightarrow 0} \frac{1}{2} \cdot \left(\frac{\frac{3}{2}x}{\frac{3}{2}\sin\left(\frac{3x}{2}\right)}\right)^2 = \lim_{x \rightarrow 0} \frac{1}{2} \cdot \left(\frac{2}{3}\right)^2 \cdot \left(\frac{\frac{3x}{2}}{\sin\left(\frac{3x}{2}\right)}\right)^2

STEP 7

As xx approaches 0, 3x2\frac{3x}{2} also approaches 0.
Therefore, we can use our limit identity: limx0sin(3x2)3x2=1 \lim_{x \rightarrow 0} \frac{\sin\left(\frac{3x}{2}\right)}{\frac{3x}{2}} = 1 So, limx03x2sin(3x2)=11=1 \lim_{x \rightarrow 0} \frac{\frac{3x}{2}}{\sin\left(\frac{3x}{2}\right)} = \frac{1}{1} = 1

STEP 8

Substituting this back into our expression, we get: limx012(23)2(3x2sin(3x2))2=1249(1)2=29 \lim_{x \rightarrow 0} \frac{1}{2} \cdot \left(\frac{2}{3}\right)^2 \cdot \left(\frac{\frac{3x}{2}}{\sin\left(\frac{3x}{2}\right)}\right)^2 = \frac{1}{2} \cdot \frac{4}{9} \cdot (1)^2 = \frac{2}{9}

STEP 9

The limit is 29\frac{2}{9}.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord