Math  /  Algebra

QuestionFind the exponential form for the complex number below z=(1+i)6(1+3i)6e(1+i)2z=\frac{(1+i)^{6}(1+\sqrt{3} i)^{6}}{e^{(1+i)^{2}}}

Studdy Solution

STEP 1

1. We need to express the complex number z z in exponential form.
2. The expression involves powers of complex numbers and the exponential function.
3. We will use Euler's formula and properties of exponents to simplify the expression.

STEP 2

1. Simplify the numerator (1+i)6(1+3i)6(1+i)^6 (1+\sqrt{3}i)^6.
2. Simplify the denominator e(1+i)2e^{(1+i)^2}.
3. Combine the results to express zz in exponential form.

STEP 3

Convert 1+i1+i into polar form. The modulus is:
1+i=12+12=2 |1+i| = \sqrt{1^2 + 1^2} = \sqrt{2}
The argument is:
arg(1+i)=π4 \arg(1+i) = \frac{\pi}{4}
Thus, in polar form:
1+i=2(cosπ4+isinπ4) 1+i = \sqrt{2} \left( \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \right)
Using Euler's formula:
1+i=2eiπ4 1+i = \sqrt{2} e^{i\frac{\pi}{4}}
Raise to the 6th power:
(1+i)6=(2)6ei6π4=8ei3π2 (1+i)^6 = (\sqrt{2})^6 e^{i\frac{6\pi}{4}} = 8 e^{i\frac{3\pi}{2}}

STEP 4

Convert 1+3i1+\sqrt{3}i into polar form. The modulus is:
1+3i=12+(3)2=4=2 |1+\sqrt{3}i| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2
The argument is:
arg(1+3i)=π3 \arg(1+\sqrt{3}i) = \frac{\pi}{3}
Thus, in polar form:
1+3i=2(cosπ3+isinπ3) 1+\sqrt{3}i = 2 \left( \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \right)
Using Euler's formula:
1+3i=2eiπ3 1+\sqrt{3}i = 2 e^{i\frac{\pi}{3}}
Raise to the 6th power:
(1+3i)6=26ei6×π3=64ei2π=64 (1+\sqrt{3}i)^6 = 2^6 e^{i 6 \times \frac{\pi}{3}} = 64 e^{i 2\pi} = 64

STEP 5

Simplify the denominator e(1+i)2e^{(1+i)^2}. First, calculate (1+i)2(1+i)^2:
(1+i)2=12+21i+i2=1+2i1=2i (1+i)^2 = 1^2 + 2 \cdot 1 \cdot i + i^2 = 1 + 2i - 1 = 2i
Thus, the denominator is:
e(1+i)2=e2i=cos(2)+isin(2) e^{(1+i)^2} = e^{2i} = \cos(2) + i\sin(2)

STEP 6

Combine the results to express zz in exponential form:
z=8ei3π2×64e2i=512ei3π2e2i z = \frac{8 e^{i\frac{3\pi}{2}} \times 64}{e^{2i}} = \frac{512 e^{i\frac{3\pi}{2}}}{e^{2i}}
Simplify the exponent:
z=512ei(3π22) z = 512 e^{i(\frac{3\pi}{2} - 2)}
This is the exponential form of zz.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord