Math

QuestionFind the value of sec[sin1(32)]\sec \left[\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right].

Studdy Solution

STEP 1

Assumptions1. The function sec[sin1(3)]\sec \left[\sin ^{-1}\left(-\frac{\sqrt{3}}{}\right)\right] is a composition of the secant function and the inverse sine function. . The inverse sine function, sin1\sin^{-1}, gives an angle whose sine is the input value.
3. The secant function, sec\sec, is the reciprocal of the cosine function.

STEP 2

First, we need to find the angle whose sine is 2-\frac{\sqrt{}}{2}. This is done by applying the inverse sine function.
sin1(2)\sin^{-1}\left(-\frac{\sqrt{}}{2}\right)

STEP 3

The value 32-\frac{\sqrt{3}}{2} is the sine of π3-\frac{\pi}{3} or 1803=60-\frac{180}{3} = -60 degrees in the unit circle. So,
sin1(32)=π3\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3}

STEP 4

Now, we need to find the secant of this angle. The secant is the reciprocal of the cosine, so we need to find the cosine of π3-\frac{\pi}{3}.
cos(π3)\cos\left(-\frac{\pi}{3}\right)

STEP 5

The cosine of π3-\frac{\pi}{3} is 12\frac{1}{2}, socos(π3)=12\cos\left(-\frac{\pi}{3}\right) = \frac{1}{2}

STEP 6

Finally, we find the secant of π3-\frac{\pi}{3} by taking the reciprocal of the cosine.
sec(π3)=1cos(π3)\sec\left(-\frac{\pi}{3}\right) = \frac{1}{\cos\left(-\frac{\pi}{3}\right)}

STEP 7

Substitute the value of cos(π3)\cos\left(-\frac{\pi}{3}\right) into the equation.
sec(π3)=112\sec\left(-\frac{\pi}{3}\right) = \frac{1}{\frac{1}{2}}

STEP 8

Calculate the value of the secant.
sec(π3)=2\sec\left(-\frac{\pi}{3}\right) =2So, the exact value of the expression sec[sin1(32)]\sec \left[\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right] is2.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord