Math

QuestionFind the de Broglie wavelength of an electron moving at 2.35×106 m/s2.35 \times 10^{6} \mathrm{~m/s}. Choices: 5.14×1037 m5.14 \times 10^{-37} \mathrm{~m}, 2.74×1010 m2.74 \times 10^{-10} \mathrm{~m}, 3.10×1010 m3.10 \times 10^{-10} \mathrm{~m}, 3.23×109 m3.23 \times 10^{9} \mathrm{~m}.

Studdy Solution

STEP 1

Assumptions1. The speed of the electron is .35×106 m/s.35 \times10^{6} \mathrm{~m/s} . We are using the de Broglie equation to calculate the wavelength3. The mass of the electron is 9.11×1031 kg9.11 \times10^{-31} \mathrm{~kg} (known constant)
4. The Planck's constant is 6.626×1034 mkg/s6.626 \times10^{-34} \mathrm{~m^ kg / s} (known constant)

STEP 2

The de Broglie wavelength of a particle is given by the equationλ=hmv\lambda = \frac{h}{mv}whereλ\lambda is the de Broglie wavelength, hh is the Planck's constant, mm is the mass of the particle, andvv is the velocity of the particle.

STEP 3

Now, plug in the given values for the Planck's constant, the mass of the electron, and the velocity of the electron to calculate the de Broglie wavelength.
λ=6.626×1034 m2kg/s9.11×1031 kg×2.35×106 m/s\lambda = \frac{6.626 \times10^{-34} \mathrm{~m^2 kg / s}}{9.11 \times10^{-31} \mathrm{~kg} \times2.35 \times10^{6} \mathrm{~m/s}}

STEP 4

Perform the multiplication in the denominator.
λ=6.626×1034 m2kg/s2.14×1024 kgm/s\lambda = \frac{6.626 \times10^{-34} \mathrm{~m^2 kg / s}}{2.14 \times10^{-24} \mathrm{~kg m/s}}

STEP 5

Divide the numerator by the denominator to calculate the de Broglie wavelength.
λ=.626×1034 m2kg/s2.14×1024 kgm/s=3.10×1010 m\lambda = \frac{.626 \times10^{-34} \mathrm{~m^2 kg / s}}{2.14 \times10^{-24} \mathrm{~kg m/s}} =3.10 \times10^{-10} \mathrm{~m}The de Broglie wavelength of an electron traveling with a speed of 2.35×10 m/s2.35 \times10^{} \mathrm{~m/s} is 3.10×1010 m3.10 \times10^{-10} \mathrm{~m}.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord