Math

QuestionFind ΔW\Delta W and ΔU\Delta U for a 6 cm6 \mathrm{~cm} iron cube heated from 20C20^{\circ} \mathrm{C} to 300C300^{\circ} \mathrm{C}.

Studdy Solution

STEP 1

Assumptions1. The initial temperature is 20C20^{\circ} \mathrm{C} . The final temperature is 300C300^{\circ} \mathrm{C}
3. The specific heat capacity of iron is 0.1calcal/gC0.1 \mathrm{cal}^{\mathrm{cal}} / \mathrm{g}^{\circ} \mathrm{C}
4. The volume coefficient of thermal expansion for iron is 3.6×105/ΦCC3.6 \times10^{-5} /{ }^{\Phi_{C}} \mathrm{C}
5. The mass of the iron cube is 1700 g1700 \mathrm{~g}

STEP 2

First, we need to find the change in internal energy Δ\Delta \mathrm{}, which can be calculated using the formulaΔ=mcΔ\Delta \mathrm{} = m \cdot c \cdot \Deltawhere mm is the mass, cc is the specific heat capacity, and Δ\Delta is the change in temperature.

STEP 3

Now, plug in the given values for the mass, specific heat capacity, and change in temperature to calculate the change in internal energy.
Δ=1700 g0.1calcal/gC(300C20C)\Delta \mathrm{} =1700 \mathrm{~g} \cdot0.1 \mathrm{cal}^{\mathrm{cal}} / \mathrm{g}^{\circ} \mathrm{C} \cdot (300^{\circ} \mathrm{C} -20^{\circ} \mathrm{C})

STEP 4

Calculate the change in internal energy.
Δ=1700 g0.1calcal/gC280C=47600cal\Delta \mathrm{} =1700 \mathrm{~g} \cdot0.1 \mathrm{cal}^{\mathrm{cal}} / \mathrm{g}^{\circ} \mathrm{C} \cdot280^{\circ} \mathrm{C} =47600 \mathrm{cal}

STEP 5

Next, we need to find the change in work ΔW\Delta \mathrm{W}, which can be calculated using the formulaΔW=pΔV\Delta \mathrm{W} = p \cdot \Delta Vwhere pp is the pressure and ΔV\Delta V is the change in volume. However, we first need to calculate ΔV\Delta V.

STEP 6

The change in volume ΔV\Delta V can be calculated using the formulaΔV=VβΔ\Delta V = V \cdot \beta \cdot \Deltawhere VV is the initial volume, β\beta is the volume coefficient of thermal expansion, and Δ\Delta is the change in temperature.

STEP 7

The initial volume VV of the cube can be calculated using the formulaV=a3V = a^3where aa is the side length of the cube. Given that the side length is 6.0 cm6.0 \mathrm{~cm}, we haveV=(6.0 cm)3=216 cm3=0.000216 m3V = (6.0 \mathrm{~cm})^3 =216 \mathrm{~cm}^3 =0.000216 \mathrm{~m}^3

STEP 8

Now, plug in the given values for the initial volume, volume coefficient of thermal expansion, and change in temperature to calculate the change in volume.
ΔV=0.000216 m33.6×105/ΦCC280C\Delta V =0.000216 \mathrm{~m}^3 \cdot3.6 \times10^{-5} /{ }^{\Phi_{C}} \mathrm{C} \cdot280^{\circ} \mathrm{C}

STEP 9

Calculate the change in volume.
ΔV=.000216 m33.6×5/ΦCC280C=2.18×6 m3\Delta V =.000216 \mathrm{~m}^3 \cdot3.6 \times^{-5} /{ }^{\Phi_{C}} \mathrm{C} \cdot280^{\circ} \mathrm{C} =2.18 \times^{-6} \mathrm{~m}^{3}So, the correct option is A 2.18×6 m32.18 \times^{-6} \mathrm{~m}^{3}.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord