Math  /  Calculus

QuestionFind the area under the curve y=1xy=\frac{1}{x} over the interval [1,6][1,6]. \square Find the average value of y=1xy=\frac{1}{x} over the interval [1,6][1,6]. \square

Studdy Solution

STEP 1

1. We are given the function y=1x y = \frac{1}{x} .
2. We need to find the area under the curve over the interval [1,6][1, 6].
3. We also need to find the average value of the function over the same interval.

STEP 2

1. Set up the definite integral to find the area under the curve.
2. Evaluate the definite integral.
3. Use the result to find the average value of the function over the interval.

STEP 3

Set up the definite integral for the area under the curve:
161xdx \int_{1}^{6} \frac{1}{x} \, dx

STEP 4

Evaluate the definite integral:
The antiderivative of 1x\frac{1}{x} is lnx\ln|x|.
161xdx=[lnx]16 \int_{1}^{6} \frac{1}{x} \, dx = \left[ \ln|x| \right]_{1}^{6}

STEP 5

Apply the limits of integration:
[lnx]16=ln6ln1 \left[ \ln|x| \right]_{1}^{6} = \ln|6| - \ln|1|
Since ln1=0\ln|1| = 0, the expression simplifies to:
ln60=ln6 \ln|6| - 0 = \ln 6

STEP 6

To find the average value of the function over the interval [1,6][1, 6], use the formula for the average value of a function:
Average value=1baabf(x)dx \text{Average value} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx
For f(x)=1x f(x) = \frac{1}{x} , a=1 a = 1 , and b=6 b = 6 :
Average value=161161xdx \text{Average value} = \frac{1}{6-1} \int_{1}^{6} \frac{1}{x} \, dx

STEP 7

Substitute the result from the definite integral:
Average value=15ln6 \text{Average value} = \frac{1}{5} \ln 6
The area under the curve is:
ln6 \boxed{\ln 6}
The average value of the function over the interval is:
15ln6 \boxed{\frac{1}{5} \ln 6}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord