Math  /  Trigonometry

QuestionFind secθ\sec \theta and cscθ\csc \theta if cotθ=1235\cot \theta=-\frac{12}{35} and cosθ<0\cos \theta<0.

Studdy Solution

STEP 1

1. The trigonometric identity cotθ=cosθsinθ\cot \theta = \frac{\cos \theta}{\sin \theta} will be used.
2. The Pythagorean identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1 will help find sinθ\sin \theta and cosθ\cos \theta.
3. The quadrant of θ\theta will be determined using cosθ<0\cos \theta < 0 and cotθ<0\cot \theta < 0.

STEP 2

1. Determine the quadrant where θ\theta lies.
2. Express sinθ\sin \theta and cosθ\cos \theta using the given cotθ\cot \theta.
3. Use the Pythagorean identity to find sinθ\sin \theta and cosθ\cos \theta.
4. Calculate secθ\sec \theta and cscθ\csc \theta.

STEP 3

Determine the quadrant where θ\theta lies. Given cotθ=1235\cot \theta = -\frac{12}{35} and cosθ<0\cos \theta < 0, we know: - cotθ<0\cot \theta < 0 implies θ\theta is in either the second or fourth quadrant. - cosθ<0\cos \theta < 0 implies θ\theta is in the second or third quadrant.
Thus, θ\theta must be in the second quadrant.

STEP 4

Express sinθ\sin \theta and cosθ\cos \theta using cotθ=1235\cot \theta = -\frac{12}{35}.
Since cotθ=cosθsinθ=1235\cot \theta = \frac{\cos \theta}{\sin \theta} = -\frac{12}{35}, we can set: cosθ=12kandsinθ=35k\cos \theta = -12k \quad \text{and} \quad \sin \theta = 35k for some positive kk (since sinθ>0\sin \theta > 0 in the second quadrant).

STEP 5

Use the Pythagorean identity to find kk.
Substitute cosθ\cos \theta and sinθ\sin \theta into the identity: (12k)2+(35k)2=1(-12k)^2 + (35k)^2 = 1 144k2+1225k2=1144k^2 + 1225k^2 = 1 1369k2=11369k^2 = 1 k2=11369k^2 = \frac{1}{1369} k=137k = \frac{1}{37}
Now find sinθ\sin \theta and cosθ\cos \theta: sinθ=35k=3537\sin \theta = 35k = \frac{35}{37} cosθ=12k=1237\cos \theta = -12k = -\frac{12}{37}

STEP 6

Calculate secθ\sec \theta and cscθ\csc \theta.
secθ=1cosθ=3712\sec \theta = \frac{1}{\cos \theta} = -\frac{37}{12} cscθ=1sinθ=3735\csc \theta = \frac{1}{\sin \theta} = \frac{37}{35}
The values are: secθ=3712,cscθ=3735\sec \theta = -\frac{37}{12}, \quad \csc \theta = \frac{37}{35}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord