Math

QuestionSolve for β\beta in the equation: sec(4β25)=csc(2β+7)\sec(4\beta - 25^\circ) = \csc(2\beta + 7^\circ), where all angles are acute.

Studdy Solution

STEP 1

Assumptions1. All angles involved are acute angles. . The equation is sec(4β25)=csc(β+7)\sec \left(4 \beta-25^{\circ}\right)=\csc \left( \beta+7^{\circ}\right)3. We are looking for one solution for β\beta.

STEP 2

First, we need to understand that secant and cosecant are reciprocal of cosine and sine respectively. So, we can rewrite the equation as1cos(4β25)=1sin(2β+7)\frac{1}{\cos \left(4 \beta-25^{\circ}\right)}=\frac{1}{\sin \left(2 \beta+7^{\circ}\right)}

STEP 3

Since the fractions are equal, we can equate the numerators and the denominators separately. This gives uscos(β25)=sin(2β+7)\cos \left( \beta-25^{\circ}\right)=\sin \left(2 \beta+7^{\circ}\right)

STEP 4

We know that sin(θ)=cos(90θ)\sin(\theta) = \cos(90^{\circ}-\theta). So, we can rewrite the equation ascos(4β25)=cos(90(2β+7))\cos \left(4 \beta-25^{\circ}\right)=\cos \left(90^{\circ}-\left(2 \beta+7^{\circ}\right)\right)

STEP 5

implify the right side of the equationcos(4β25)=cos(832β)\cos \left(4 \beta-25^{\circ}\right)=\cos \left(83^{\circ}-2 \beta\right)

STEP 6

Since the cosines of the two angles are equal, the angles themselves must be equal or supplementary. That is, either4β25=832β4 \beta-25^{\circ}=83^{\circ}-2 \betaor4β25=180(832β)4 \beta-25^{\circ}=180^{\circ}-\left(83^{\circ}-2 \beta\right)

STEP 7

olve the first equation for β\beta4β25=832β4 \beta-25^{\circ}=83^{\circ}-2 \beta6β=1086 \beta=108^{\circ}β=18\beta=18^{\circ}

STEP 8

Check if β=18\beta=18^{\circ} is a valid solution by substituting it back into the original equationsec(4×1825)=csc(2×18+7)\sec \left(4 \times18^{\circ}-25^{\circ}\right)=\csc \left(2 \times18^{\circ}+7^{\circ}\right)sec(47)=csc(43)\sec \left(47^{\circ}\right)=\csc \left(43^{\circ}\right)This is not true, so β=18\beta=18^{\circ} is not a valid solution.

STEP 9

olve the second equation for β\beta4β25=180(832β)4 \beta-25^{\circ}=180^{\circ}-\left(83^{\circ}-2 \beta\right)4β25=97+2β4 \beta-25^{\circ}=97^{\circ}+2 \beta2β=1222 \beta=122^{\circ}β=61\beta=61^{\circ}

STEP 10

Check if β=61\beta=61^{\circ} is a valid solution by substituting it back into the original equationsec(4×6125)=csc(2×61+7)\sec \left(4 \times61^{\circ}-25^{\circ}\right)=\csc \left(2 \times61^{\circ}+7^{\circ}\right)sec(219)=csc(129)\sec \left(219^{\circ}\right)=\csc \left(129^{\circ}\right)This is true, so β=61\beta=61^{\circ} is a valid solution.
So, one solution for the equation is β=61\beta=61^{\circ}.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord