Math  /  Calculus

Questionfind ln(x+1)22x+2dx\int \frac{\ln (x+1)^{2}}{2 x+2} d x

Studdy Solution

STEP 1

1. We are given the integral ln(x+1)22x+2dx\int \frac{\ln (x+1)^{2}}{2x+2} \, dx.
2. We will use substitution to simplify the integral.

STEP 2

1. Simplify the integrand.
2. Use substitution to simplify the integral.
3. Integrate the simplified expression.
4. Back-substitute to find the solution in terms of xx.

STEP 3

Simplify the integrand by recognizing that ln(x+1)2=2ln(x+1)\ln (x+1)^{2} = 2 \ln (x+1):
ln(x+1)22x+2dx=2ln(x+1)2(x+1)dx\int \frac{\ln (x+1)^{2}}{2x+2} \, dx = \int \frac{2 \ln (x+1)}{2(x+1)} \, dx
Simplify further:
=ln(x+1)x+1dx= \int \frac{\ln (x+1)}{x+1} \, dx

STEP 4

Use substitution. Let u=ln(x+1) u = \ln(x+1) , then du=1x+1dx du = \frac{1}{x+1} \, dx .
Thus, the integral becomes:
udu\int u \, du

STEP 5

Integrate the simplified expression:
udu=u22+C\int u \, du = \frac{u^2}{2} + C

STEP 6

Back-substitute u=ln(x+1) u = \ln(x+1) into the integrated expression:
(ln(x+1))22+C\frac{(\ln(x+1))^2}{2} + C
The solution to the integral is:
(ln(x+1))22+C\boxed{\frac{(\ln(x+1))^2}{2} + C}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord