Math  /  Algebra

QuestionFind functions ff and gg so that fg=Hf \circ g=H. H(x)=x2+17H(x)=\sqrt{x^{2}+17}
Choose the correct pair of functions. A. f(x)=x17,g(x)=x2f(x)=\sqrt{x}-17, g(x)=x^{2} c. f(x)=x,g(x)=x2+17f(x)=\sqrt{x}, g(x)=x^{2}+17 B. f(x)=x2,g(x)=x17f(x)=x^{2}, g(x)=\sqrt{x}-17 D. f(x)=x2+17,g(x)=xf(x)=x^{2}+17, g(x)=\sqrt{x}

Studdy Solution

STEP 1

1. We need to find functions f f and g g such that fg=H f \circ g = H .
2. The function H(x)=x2+17 H(x) = \sqrt{x^2 + 17} .
3. We are given multiple choices for f f and g g .

STEP 2

1. Understand the composition of functions.
2. Analyze each option to see if f(g(x))=H(x) f(g(x)) = H(x) .
3. Verify the correct pair of functions.

STEP 3

Understand that fg=H f \circ g = H means f(g(x))=H(x) f(g(x)) = H(x) .

STEP 4

Analyze Option A:
- f(x)=x17 f(x) = \sqrt{x} - 17 - g(x)=x2 g(x) = x^2
Calculate f(g(x)) f(g(x)) :
f(g(x))=f(x2)=x217 f(g(x)) = f(x^2) = \sqrt{x^2} - 17
This simplifies to:
f(g(x))=x17 f(g(x)) = |x| - 17
This does not equal H(x)=x2+17 H(x) = \sqrt{x^2 + 17} .

STEP 5

Analyze Option B:
- f(x)=x2 f(x) = x^2 - g(x)=x17 g(x) = \sqrt{x} - 17
Calculate f(g(x)) f(g(x)) :
f(g(x))=f(x17)=(x17)2 f(g(x)) = f(\sqrt{x} - 17) = (\sqrt{x} - 17)^2
This does not equal H(x)=x2+17 H(x) = \sqrt{x^2 + 17} .

STEP 6

Analyze Option C:
- f(x)=x f(x) = \sqrt{x} - g(x)=x2+17 g(x) = x^2 + 17
Calculate f(g(x)) f(g(x)) :
f(g(x))=f(x2+17)=x2+17 f(g(x)) = f(x^2 + 17) = \sqrt{x^2 + 17}
This equals H(x)=x2+17 H(x) = \sqrt{x^2 + 17} .

STEP 7

Analyze Option D:
- f(x)=x2+17 f(x) = x^2 + 17 - g(x)=x g(x) = \sqrt{x}
Calculate f(g(x)) f(g(x)) :
f(g(x))=f(x)=(x)2+17=x+17 f(g(x)) = f(\sqrt{x}) = (\sqrt{x})^2 + 17 = x + 17
This does not equal H(x)=x2+17 H(x) = \sqrt{x^2 + 17} .

STEP 8

Verify the correct pair of functions:
The correct pair of functions is Option C:
- f(x)=x f(x) = \sqrt{x} - g(x)=x2+17 g(x) = x^2 + 17
The correct pair of functions is:
Option C: f(x)=x,g(x)=x2+17 \boxed{\text{Option C: } f(x) = \sqrt{x}, \, g(x) = x^2 + 17}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord