Math  /  Algebra

QuestionFind A1A^{-1} by forming [A][A \|] and then using row operations to obtain [B][\| B], where A1=[B]A^{-1}=[B]. Check that AA1=IA A^{-1}=I and A1A=IA^{-1} A=I. A=[441031141]A=\left[\begin{array}{rrr} 4 & 4 & -1 \\ 0 & 3 & -1 \\ -1 & -4 & 1 \end{array}\right]
Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. A1=A^{-1}= \square (Type an integer or a simplified fraction for each matrix element.) B. The matrix does not have an inverse.

Studdy Solution

STEP 1

1. The matrix A A is a square matrix, which is a necessary condition for the existence of an inverse.
2. The inverse of a matrix A A , denoted A1 A^{-1} , exists if and only if A A is non-singular, i.e., its determinant is non-zero.
3. We will use the augmented matrix method to find A1 A^{-1} .

STEP 2

1. Form the augmented matrix [AI][A \mid I], where I I is the identity matrix.
2. Use row operations to transform [AI][A \mid I] into [IB][I \mid B], where B=A1 B = A^{-1} .
3. Verify that AA1=I A A^{-1} = I and A1A=I A^{-1} A = I .

STEP 3

Form the augmented matrix [AI][A \mid I]:
[AI]=[441100031010141001][A \mid I] = \left[\begin{array}{ccc|ccc} 4 & 4 & -1 & 1 & 0 & 0 \\ 0 & 3 & -1 & 0 & 1 & 0 \\ -1 & -4 & 1 & 0 & 0 & 1 \end{array}\right]

STEP 4

Use row operations to transform [AI][A \mid I] into [IB][I \mid B].
1. Make the first pivot 1 by swapping Row 1 and Row 3:
[141001031010441100]\left[\begin{array}{ccc|ccc} -1 & -4 & 1 & 0 & 0 & 1 \\ 0 & 3 & -1 & 0 & 1 & 0 \\ 4 & 4 & -1 & 1 & 0 & 0 \end{array}\right]
2. Multiply Row 1 by 1-1 to make the pivot positive:
[141001031010441100]\left[\begin{array}{ccc|ccc} 1 & 4 & -1 & 0 & 0 & -1 \\ 0 & 3 & -1 & 0 & 1 & 0 \\ 4 & 4 & -1 & 1 & 0 & 0 \end{array}\right]
3. Eliminate the first column below the pivot by replacing Row 3 with Row 3 minus 4 times Row 1:
[1410010310100123104]\left[\begin{array}{ccc|ccc} 1 & 4 & -1 & 0 & 0 & -1 \\ 0 & 3 & -1 & 0 & 1 & 0 \\ 0 & -12 & 3 & 1 & 0 & 4 \end{array}\right]
4. Make the second pivot 1 by dividing Row 2 by 3:
[141001011301300123104]\left[\begin{array}{ccc|ccc} 1 & 4 & -1 & 0 & 0 & -1 \\ 0 & 1 & -\frac{1}{3} & 0 & \frac{1}{3} & 0 \\ 0 & -12 & 3 & 1 & 0 & 4 \end{array}\right]
5. Eliminate the second column above and below the pivot by replacing Row 1 with Row 1 minus 4 times Row 2 and Row 3 with Row 3 plus 12 times Row 2:
[1013043101130130001148]\left[\begin{array}{ccc|ccc} 1 & 0 & \frac{1}{3} & 0 & -\frac{4}{3} & -1 \\ 0 & 1 & -\frac{1}{3} & 0 & \frac{1}{3} & 0 \\ 0 & 0 & -1 & 1 & 4 & 8 \end{array}\right]
6. Make the third pivot 1 by multiplying Row 3 by 1-1:
[1013043101130130001148]\left[\begin{array}{ccc|ccc} 1 & 0 & \frac{1}{3} & 0 & -\frac{4}{3} & -1 \\ 0 & 1 & -\frac{1}{3} & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 & -1 & -4 & -8 \end{array}\right]
7. Eliminate the third column above the pivot by replacing Row 1 with Row 1 minus 13\frac{1}{3} times Row 3 and Row 2 with Row 2 plus 13\frac{1}{3} times Row 3:
[1001301301013183001148]\left[\begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ 0 & 1 & 0 & -\frac{1}{3} & -1 & -\frac{8}{3} \\ 0 & 0 & 1 & -1 & -4 & -8 \end{array}\right]

STEP 5

The matrix B B is the inverse A1 A^{-1} :
A1=[1301313183148]A^{-1} = \left[\begin{array}{ccc} \frac{1}{3} & 0 & \frac{1}{3} \\ -\frac{1}{3} & -1 & -\frac{8}{3} \\ -1 & -4 & -8 \end{array}\right]
Verify that AA1=I A A^{-1} = I and A1A=I A^{-1} A = I by performing matrix multiplication.
The inverse matrix A1 A^{-1} is:
[1301313183148]\boxed{\left[\begin{array}{ccc} \frac{1}{3} & 0 & \frac{1}{3} \\ -\frac{1}{3} & -1 & -\frac{8}{3} \\ -1 & -4 & -8 \end{array}\right]}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord