Math

QuestionFind f(ln3)f(\ln 3) for the function f(x)=2e2xf(x)=2 e^{2 x}.

Studdy Solution

STEP 1

Assumptions1. The function is f(x)=exf(x)= e^{ x} . The value of x is ln3\ln3

STEP 2

We need to find the value of the function f(x)f(x) at x=lnx=\ln. We can do this by substituting x=lnx=\ln into the function.
f(x)=2e2xf(x) =2 e^{2 x}

STEP 3

Substitute x=ln3x=\ln3 into the function.
f(ln3)=2e2ln3f(\ln3) =2 e^{2 \ln3}

STEP 4

We can simplify 2ln32 \ln3 to ln32\ln3^2 because of the logarithm property lnab=blna\ln a^b = b \ln a.
f(ln3)=2eln32f(\ln3) =2 e^{\ln3^2}

STEP 5

We know that elna=ae^{\ln a} = a, so we can simplify eln32e^{\ln3^2} to 323^2.
f(ln3)=232f(\ln3) =2 \cdot3^2

STEP 6

Calculate the value of the function at x=ln3x=\ln3.
f(ln3)=232=18f(\ln3) =2 \cdot3^2 =18So, the value of the function f(x)=2e2xf(x)=2 e^{2 x} at x=ln3x=\ln3 is18.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord