Math

QuestionRewrite sinθcotθ+4cosθ\sin \theta \cot \theta + 4 \cos \theta using sinθ\sin \theta and cosθ\cos \theta, then simplify.

Studdy Solution

STEP 1

Assumptions1. We are given the expression sinθcotθ+4cosθ\sin \theta \cot \theta+4 \cos \theta. . We need to rewrite this expression in terms of sinθ\sin \theta and cosθ\cos \theta.
3. We know that cotθ\cot \theta is the reciprocal of tanθ\tan \theta, which is cosθsinθ\frac{\cos \theta}{\sin \theta}.

STEP 2

Substitute cotθ\cot \theta with cosθsinθ\frac{\cos \theta}{\sin \theta} in the given expression.
sinθcotθ+4cosθ=sinθ(cosθsinθ)+4cosθ\sin \theta \cot \theta+4 \cos \theta = \sin \theta \left(\frac{\cos \theta}{\sin \theta}\right) +4 \cos \theta

STEP 3

implify the expression by cancelling out the common factors.
sinθ(cosθsinθ)+cosθ=cosθ+cosθ\sin \theta \left(\frac{\cos \theta}{\sin \theta}\right) + \cos \theta = \cos \theta + \cos \theta

STEP 4

Combine like terms.
cosθ+4cosθ=cosθ\cos \theta +4 \cos \theta = \cos \thetaSo, the expression sinθcotθ+4cosθ\sin \theta \cot \theta+4 \cos \theta simplifies to cosθ \cos \theta in terms of sinθ\sin \theta and cosθ\cos \theta.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord