Math

QuestionEvaluate: y(x+y)y(x+y) for x=43x=\frac{4}{3} and y=2y=2.

Studdy Solution

STEP 1

Assumptions1. The function to evaluate is y(x+y)y(x+y). The value of xx is 43\frac{4}{3}
3. The value of yy is $$

STEP 2

We need to substitute the given values of xx and yy into the function.y(x+y)=2(4+2)y(x+y) =2\left(\frac{4}{} +2\right)

STEP 3

Now, we simplify the expression inside the parentheses.
2(3+2)=2(3+63)2\left(\frac{}{3} +2\right) =2\left(\frac{}{3} + \frac{6}{3}\right)

STEP 4

Add the fractions inside the parentheses.
2(43+63)=2×1032\left(\frac{4}{3} + \frac{6}{3}\right) =2 \times \frac{10}{3}

STEP 5

Multiply the fraction by2 to get the final answer.
2×103=2032 \times \frac{10}{3} = \frac{20}{3}So, y(x+y)y(x+y) evaluates to 203\frac{20}{3} when x=43x=\frac{4}{3} and y=2y=2.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord