Math  /  Calculus

QuestionEvaluate the integral. Use CC (upper case) for the constant of integration. 8x+916x2dx\int \frac{8 x+9}{\sqrt{16-x^{2}}} d x

Studdy Solution

STEP 1

1. The integral is of the form 8x+916x2dx\int \frac{8x + 9}{\sqrt{16 - x^2}} \, dx.
2. The expression inside the square root, 16x216 - x^2, suggests a trigonometric substitution.
3. We will use CC for the constant of integration.

STEP 2

1. Simplify the integral by splitting it into two separate integrals.
2. Use trigonometric substitution for each integral.
3. Evaluate each integral.
4. Combine the results and include the constant of integration.

STEP 3

Split the integral into two separate integrals:
8x+916x2dx=8x16x2dx+916x2dx\int \frac{8x + 9}{\sqrt{16 - x^2}} \, dx = \int \frac{8x}{\sqrt{16 - x^2}} \, dx + \int \frac{9}{\sqrt{16 - x^2}} \, dx

STEP 4

For the first integral, 8x16x2dx\int \frac{8x}{\sqrt{16 - x^2}} \, dx, use the substitution x=4sinθx = 4\sin\theta, which implies dx=4cosθdθdx = 4\cos\theta \, d\theta and 16x2=4cosθ\sqrt{16 - x^2} = 4\cos\theta.
Substitute into the integral:
8x16x2dx=8(4sinθ)4cosθ4cosθdθ=32sinθdθ\int \frac{8x}{\sqrt{16 - x^2}} \, dx = \int \frac{8(4\sin\theta)}{4\cos\theta} \cdot 4\cos\theta \, d\theta = \int 32\sin\theta \, d\theta

STEP 5

Evaluate the integral 32sinθdθ\int 32\sin\theta \, d\theta:
32sinθdθ=32cosθ+C1\int 32\sin\theta \, d\theta = -32\cos\theta + C_1
Convert back to xx using cosθ=1sin2θ=1(x4)2=16x24\cos\theta = \sqrt{1 - \sin^2\theta} = \sqrt{1 - \left(\frac{x}{4}\right)^2} = \frac{\sqrt{16 - x^2}}{4}:
32cosθ=3216x24=816x2-32\cos\theta = -32 \cdot \frac{\sqrt{16 - x^2}}{4} = -8\sqrt{16 - x^2}

STEP 6

For the second integral, 916x2dx\int \frac{9}{\sqrt{16 - x^2}} \, dx, use the same substitution x=4sinθx = 4\sin\theta, which implies 16x2=4cosθ\sqrt{16 - x^2} = 4\cos\theta.
Substitute into the integral:
916x2dx=94cosθ4cosθdθ=9dθ\int \frac{9}{\sqrt{16 - x^2}} \, dx = \int \frac{9}{4\cos\theta} \cdot 4\cos\theta \, d\theta = \int 9 \, d\theta

STEP 7

Evaluate the integral 9dθ\int 9 \, d\theta:
9dθ=9θ+C2\int 9 \, d\theta = 9\theta + C_2
Convert back to xx using θ=arcsin(x4)\theta = \arcsin\left(\frac{x}{4}\right):
9θ=9arcsin(x4)9\theta = 9\arcsin\left(\frac{x}{4}\right)

STEP 8

Combine the results from both integrals and include the constant of integration:
8x+916x2dx=816x2+9arcsin(x4)+C\int \frac{8x + 9}{\sqrt{16 - x^2}} \, dx = -8\sqrt{16 - x^2} + 9\arcsin\left(\frac{x}{4}\right) + C
The evaluated integral is:
816x2+9arcsin(x4)+C\boxed{-8\sqrt{16 - x^2} + 9\arcsin\left(\frac{x}{4}\right) + C}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord