Math  /  Calculus

Questionxlnxdx\int x \ln x d x

Studdy Solution

STEP 1

1. We are given the integral xlnxdx\int x \ln x \, dx.
2. We will use integration by parts to solve this integral.
3. Integration by parts formula: udv=uvvdu\int u \, dv = uv - \int v \, du.

STEP 2

1. Identify uu and dvdv for integration by parts.
2. Differentiate uu to find dudu and integrate dvdv to find vv.
3. Apply the integration by parts formula.
4. Simplify the resulting expression.
5. Evaluate the remaining integral if necessary.

STEP 3

Identify uu and dvdv:
Let u=lnxu = \ln x and dv=xdxdv = x \, dx.

STEP 4

Differentiate uu to find dudu:
du=1xdx du = \frac{1}{x} \, dx
Integrate dvdv to find vv:
v=x22 v = \frac{x^2}{2}

STEP 5

Apply the integration by parts formula:
xlnxdx=uvvdu\int x \ln x \, dx = uv - \int v \, du
Substitute uu, vv, and dudu into the formula:
xlnxdx=(lnx)(x22)(x22)(1x)dx\int x \ln x \, dx = \left(\ln x\right)\left(\frac{x^2}{2}\right) - \int \left(\frac{x^2}{2}\right)\left(\frac{1}{x}\right) \, dx

STEP 6

Simplify the expression:
xlnxdx=x2lnx2x2dx\int x \ln x \, dx = \frac{x^2 \ln x}{2} - \int \frac{x}{2} \, dx

STEP 7

Evaluate the remaining integral:
x2dx=12xdx=12x22=x24\int \frac{x}{2} \, dx = \frac{1}{2} \int x \, dx = \frac{1}{2} \cdot \frac{x^2}{2} = \frac{x^2}{4}

STEP 8

Substitute back to find the final result:
xlnxdx=x2lnx2x24+C\int x \ln x \, dx = \frac{x^2 \ln x}{2} - \frac{x^2}{4} + C
where CC is the constant of integration.
The solution to the integral is:
x2lnx2x24+C\boxed{\frac{x^2 \ln x}{2} - \frac{x^2}{4} + C}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord