Math  /  Calculus

Questioncos4θsin3θdθ\int \cos ^{4} \theta \sin ^{3} \theta d \theta

Studdy Solution

STEP 1

1. We are given the integral cos4θsin3θdθ\int \cos^4 \theta \sin^3 \theta \, d\theta.
2. We will use trigonometric identities and substitution to simplify the integral.
3. We will aim to express the integral in terms of a single trigonometric function.

STEP 2

1. Simplify the integral using trigonometric identities.
2. Use substitution to solve the integral.
3. Integrate the resulting expression.
4. Simplify the final result.

STEP 3

First, express sin3θ\sin^3 \theta in terms of sinθ\sin \theta and cosθ\cos \theta:
sin3θ=sin2θsinθ=(1cos2θ)sinθ\sin^3 \theta = \sin^2 \theta \cdot \sin \theta = (1 - \cos^2 \theta) \sin \theta
Substitute this into the integral:
cos4θsin3θdθ=cos4θ(1cos2θ)sinθdθ\int \cos^4 \theta \sin^3 \theta \, d\theta = \int \cos^4 \theta (1 - \cos^2 \theta) \sin \theta \, d\theta

STEP 4

Distribute cos4θ\cos^4 \theta in the integral:
cos4θsinθdθcos6θsinθdθ\int \cos^4 \theta \sin \theta \, d\theta - \int \cos^6 \theta \sin \theta \, d\theta

STEP 5

Use substitution for each integral. Let u=cosθ u = \cos \theta , then du=sinθdθ du = -\sin \theta \, d\theta .
For the first integral:
cos4θsinθdθ=u4du\int \cos^4 \theta \sin \theta \, d\theta = -\int u^4 \, du
For the second integral:
cos6θsinθdθ=u6du\int \cos^6 \theta \sin \theta \, d\theta = -\int u^6 \, du

STEP 6

Integrate each expression:
For u4du-\int u^4 \, du:
u55+C1-\frac{u^5}{5} + C_1
For u6du-\int u^6 \, du:
u77+C2-\frac{u^7}{7} + C_2

STEP 7

Substitute back u=cosθ u = \cos \theta into the integrated expressions:
cos5θ5+C1(cos7θ7+C2)-\frac{\cos^5 \theta}{5} + C_1 - \left(-\frac{\cos^7 \theta}{7} + C_2\right)
Combine the constants:
cos5θ5+cos7θ7+C-\frac{\cos^5 \theta}{5} + \frac{\cos^7 \theta}{7} + C
The final result of the integral is:
cos5θ5+cos7θ7+C\boxed{-\frac{\cos^5 \theta}{5} + \frac{\cos^7 \theta}{7} + C}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord