Math  /  Calculus

QuestionEvaluate the integral I2=L2(x+y)dx+(yx)dyI_{2}=\int_{L_{2}}(x+y) d x+(y-x) d y where L2L_{2} is the path from P(1,1)P(1,1) to Q(2,2)Q(2,2) via R(2,1)R(2,1). I2=I_{2}= \square

Studdy Solution

STEP 1

1. The integral is a line integral over a piecewise linear path.
2. The path L2 L_2 consists of two segments: from P(1,1) P(1,1) to R(2,1) R(2,1) , and from R(2,1) R(2,1) to Q(2,2) Q(2,2) .
3. The line integral will be evaluated separately over each segment and then summed.

STEP 2

1. Parameterize the path from P(1,1) P(1,1) to R(2,1) R(2,1) .
2. Evaluate the line integral over the first segment.
3. Parameterize the path from R(2,1) R(2,1) to Q(2,2) Q(2,2) .
4. Evaluate the line integral over the second segment.
5. Sum the results from both segments.

STEP 3

Parameterize the path from P(1,1) P(1,1) to R(2,1) R(2,1) . This path is a horizontal line where y=1 y = 1 and x x varies from 1 to 2. We can parameterize it as:
x=t,y=1,where t[1,2] x = t, \quad y = 1, \quad \text{where } t \in [1, 2]

STEP 4

Substitute the parameterization into the integral and evaluate over the first segment:
12((t+1)dt+(1t)0) \int_{1}^{2} ((t + 1) \, dt + (1 - t) \cdot 0) =12(t+1)dt = \int_{1}^{2} (t + 1) \, dt
Calculate the integral:
=[t22+t]12 = \left[ \frac{t^2}{2} + t \right]_{1}^{2} =(222+2)(122+1) = \left( \frac{2^2}{2} + 2 \right) - \left( \frac{1^2}{2} + 1 \right) =(2+2)(12+1) = (2 + 2) - \left( \frac{1}{2} + 1 \right) =432 = 4 - \frac{3}{2} =8232 = \frac{8}{2} - \frac{3}{2} =52 = \frac{5}{2}

STEP 5

Parameterize the path from R(2,1) R(2,1) to Q(2,2) Q(2,2) . This path is a vertical line where x=2 x = 2 and y y varies from 1 to 2. We can parameterize it as:
x=2,y=t,where t[1,2] x = 2, \quad y = t, \quad \text{where } t \in [1, 2]

STEP 6

Substitute the parameterization into the integral and evaluate over the second segment:
12((2+t)0+(t2)dt) \int_{1}^{2} ((2 + t) \cdot 0 + (t - 2) \, dt) =12(t2)dt = \int_{1}^{2} (t - 2) \, dt
Calculate the integral:
=[t222t]12 = \left[ \frac{t^2}{2} - 2t \right]_{1}^{2} =(2222×2)(1222×1) = \left( \frac{2^2}{2} - 2 \times 2 \right) - \left( \frac{1^2}{2} - 2 \times 1 \right) =(24)(122) = (2 - 4) - \left( \frac{1}{2} - 2 \right) =2(122) = -2 - \left( \frac{1}{2} - 2 \right) =2+32 = -2 + \frac{3}{2} =42+32 = -\frac{4}{2} + \frac{3}{2} =12 = -\frac{1}{2}

STEP 7

Sum the results from both segments to find the total integral:
I2=52+(12) I_2 = \frac{5}{2} + \left(-\frac{1}{2}\right) =5212 = \frac{5}{2} - \frac{1}{2} =42 = \frac{4}{2} =2 = 2
The value of the integral I2 I_2 is:
2 \boxed{2}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord