Math  /  Calculus

QuestionWebassign.het
6. [-/1 Points] DETAILS MY NOTES 25%25 \% ASK YOUR TEACHER

Evaluate the integral. 01x(6x3+7x4)dx\int_{0}^{1} x(6 \sqrt[3]{x}+7 \sqrt[4]{x}) d x \square Submit Answer
7. [-/1 Points] DETAILS MY NOTES ASK YOUR TEACHER

Evaluate the integral. 21(6y5+4y5)dy\int_{-2}^{-1}\left(6 y^{5}+\frac{4}{y^{5}}\right) d y \square Submit Answer
8. [-/1 Points] DETAILS MY NOTES ASK YOUR TEACHER

Evaluate the integral. 01(x12+12x)dx\int_{0}^{1}\left(x^{12}+12^{x}\right) d x \square Submit Answer
9. [-/1 Points] DETAILS MY NOTES ASK YOUR TEACHER

Evaluate the integral. 0π/45+7cos2θcos2θdθ\int_{0}^{\pi / 4} \frac{5+7 \cos ^{2} \theta}{\cos ^{2} \theta} d \theta \square Submit Answer
10. [-/1 Points] DETAILS MY NOTES ASK YOUR TEACHER

Evaluate the integral, 12y+6y8y3dy\int_{1}^{2} \frac{y+6 y^{8}}{y^{3}} d y \square Submit Answer

Studdy Solution

STEP 1

1. We are dealing with a definite integral from 0 to 1.
2. The integrand can be simplified by rewriting the roots as fractional exponents.

STEP 2

1. Simplify the integrand.
2. Integrate term by term.
3. Evaluate the definite integral.
4. 1. Simplify the integrand.
2. Integrate term by term.
3. Evaluate the definite integral.

STEP_1: High_Level_Step: 1 Rewrite the integrand:
6y5+4y5=6y5+4y5 6y^5 + \frac{4}{y^5} = 6y^5 + 4y^{-5}
High_Level_Step_Completed: TRUE
STEP_2: High_Level_Step: 2 Integrate each term separately:
6y5dy=6y66=y6 \int 6y^5 \, dy = 6 \cdot \frac{y^{6}}{6} = y^6
4y5dy=4y44=y4 \int 4y^{-5} \, dy = 4 \cdot \frac{y^{-4}}{-4} = -y^{-4}
High_Level_Step_Completed: TRUE
STEP_3: High_Level_Step: 3 Evaluate the definite integral from -2 to -1:
[y6y4]21 \left[ y^6 - y^{-4} \right]_{-2}^{-1}
=((1)6(1)4)((2)6(2)4) = \left( (-1)^6 - (-1)^{-4} \right) - \left( (-2)^6 - (-2)^{-4} \right)
=(11)(64116) = \left( 1 - 1 \right) - \left( 64 - \frac{1}{16} \right)
=0(64116) = 0 - \left( 64 - \frac{1}{16} \right)
=64+116 = -64 + \frac{1}{16}
=102416+116 = -\frac{1024}{16} + \frac{1}{16}
=102316 = -\frac{1023}{16}
High_Level_Step_Completed: TRUE
The value of the integral is:
102316 \boxed{-\frac{1023}{16}}
Let's move on to the next problem.
### Problem 8: Evaluate the integral 01(x12+12x)dx\int_{0}^{1}\left(x^{12}+12^{x}\right) \, dx
_ASSUMPTIONS_:
1. We are dealing with a definite integral from 0 to 1.
2. The integrand consists of a polynomial and an exponential function.

_HIGH_LEVEL_APPROACH_:
1. Integrate the polynomial term.
2. Integrate the exponential term.
3. Evaluate the definite integral.

STEP_1: High_Level_Step: 1 Integrate the polynomial term:
x12dx=x1313 \int x^{12} \, dx = \frac{x^{13}}{13}
High_Level_Step_Completed: TRUE
STEP_2: High_Level_Step: 2 Integrate the exponential term:
The integral of 12x 12^x is 12xln(12) \frac{12^x}{\ln(12)} .
High_Level_Step_Completed: TRUE
STEP_3: High_Level_Step: 3 Evaluate the definite integral from 0 to 1:
[x1313+12xln(12)]01 \left[ \frac{x^{13}}{13} + \frac{12^x}{\ln(12)} \right]_{0}^{1}
=(11313+121ln(12))(01313+120ln(12)) = \left( \frac{1^{13}}{13} + \frac{12^1}{\ln(12)} \right) - \left( \frac{0^{13}}{13} + \frac{12^0}{\ln(12)} \right)
=(113+12ln(12))(0+1ln(12)) = \left( \frac{1}{13} + \frac{12}{\ln(12)} \right) - \left( 0 + \frac{1}{\ln(12)} \right)
=113+12ln(12)1ln(12) = \frac{1}{13} + \frac{12}{\ln(12)} - \frac{1}{\ln(12)}
=113+11ln(12) = \frac{1}{13} + \frac{11}{\ln(12)}
High_Level_Step_Completed: TRUE
The value of the integral is:
113+11ln(12) \boxed{\frac{1}{13} + \frac{11}{\ln(12)}}
Let's move on to the next problem.
### Problem 9: Evaluate the integral 0π/45+7cos2θcos2θdθ\int_{0}^{\pi / 4} \frac{5+7 \cos ^{2} \theta}{\cos ^{2} \theta} \, d \theta
_ASSUMPTIONS_:
1. We are dealing with a definite integral from 0 to π/4\pi/4.
2. The integrand can be simplified using trigonometric identities.

_HIGH_LEVEL_APPROACH_:
1. Simplify the integrand.
2. Integrate the simplified expression.
3. Evaluate the definite integral.

STEP_1: High_Level_Step: 1 Simplify the integrand:
5+7cos2θcos2θ=5cos2θ+7 \frac{5+7 \cos ^{2} \theta}{\cos ^{2} \theta} = \frac{5}{\cos^2 \theta} + 7
=5sec2θ+7 = 5 \sec^2 \theta + 7
High_Level_Step_Completed: TRUE
STEP_2: High_Level_Step: 2 Integrate each term separately:
5sec2θdθ=5tanθ \int 5 \sec^2 \theta \, d\theta = 5 \tan \theta
7dθ=7θ \int 7 \, d\theta = 7\theta
High_Level_Step_Completed: TRUE
STEP_3: High_Level_Step: 3 Evaluate the definite integral from 0 to π/4\pi/4:
[5tanθ+7θ]0π/4 \left[ 5 \tan \theta + 7\theta \right]_{0}^{\pi/4}
=(5tanπ4+7π4)(5tan0+70) = \left( 5 \tan \frac{\pi}{4} + 7 \cdot \frac{\pi}{4} \right) - \left( 5 \tan 0 + 7 \cdot 0 \right)
=(51+7π4)0 = \left( 5 \cdot 1 + \frac{7\pi}{4} \right) - 0
=5+7π4 = 5 + \frac{7\pi}{4}
High_Level_Step_Completed: TRUE
The value of the integral is:
5+7π4 \boxed{5 + \frac{7\pi}{4}}
Let's move on to the final problem.
### Problem 10: Evaluate the integral 12y+6y8y3dy\int_{1}^{2} \frac{y+6 y^{8}}{y^{3}} \, dy
_ASSUMPTIONS_:
1. We are dealing with a definite integral from 1 to 2.
2. The integrand can be simplified by dividing each term by y3 y^3 .

_HIGH_LEVEL_APPROACH_:
1. Simplify the integrand.
2. Integrate term by term.
3. Evaluate the definite integral.

STEP_1: High_Level_Step: 1 Simplify the integrand:
y+6y8y3=y2+6y5 \frac{y+6 y^{8}}{y^{3}} = y^{-2} + 6y^{5}
High_Level_Step_Completed: TRUE
STEP_2: High_Level_Step: 2 Integrate each term separately:
y2dy=y11=y1 \int y^{-2} \, dy = \frac{y^{-1}}{-1} = -y^{-1}
6y5dy=6y66=y6 \int 6y^{5} \, dy = 6 \cdot \frac{y^{6}}{6} = y^6
High_Level_Step_Completed: TRUE
STEP_3: High_Level_Step: 3 Evaluate the definite integral from 1 to 2:
[y1+y6]12 \left[ -y^{-1} + y^6 \right]_{1}^{2}
=(12+26)(11+16) = \left( -\frac{1}{2} + 2^6 \right) - \left( -\frac{1}{1} + 1^6 \right)
=(12+64)(1+1) = \left( -\frac{1}{2} + 64 \right) - \left( -1 + 1 \right)
=(12+64)+0 = \left( -\frac{1}{2} + 64 \right) + 0
=12+1282 = \frac{-1}{2} + \frac{128}{2}
=1272 = \frac{127}{2}
High_Level_Step_Completed: TRUE
The value of the integral is:
1272 \boxed{\frac{127}{2}}

STEP 3

Rewrite the roots as fractional exponents:
6x3=6x1/3 6 \sqrt[3]{x} = 6x^{1/3} 7x4=7x1/4 7 \sqrt[4]{x} = 7x^{1/4}
Thus, the integrand becomes:
x(6x1/3+7x1/4)=6x1+1/3+7x1+1/4=6x4/3+7x5/4 x(6x^{1/3} + 7x^{1/4}) = 6x^{1 + 1/3} + 7x^{1 + 1/4} = 6x^{4/3} + 7x^{5/4}

STEP 4

Integrate each term separately:
6x4/3dx=6x4/3+14/3+1=6x7/37/3=187x7/3 \int 6x^{4/3} \, dx = 6 \cdot \frac{x^{4/3 + 1}}{4/3 + 1} = 6 \cdot \frac{x^{7/3}}{7/3} = \frac{18}{7} x^{7/3}
7x5/4dx=7x5/4+15/4+1=7x9/49/4=289x9/4 \int 7x^{5/4} \, dx = 7 \cdot \frac{x^{5/4 + 1}}{5/4 + 1} = 7 \cdot \frac{x^{9/4}}{9/4} = \frac{28}{9} x^{9/4}

STEP 5

Evaluate the definite integral from 0 to 1:
[187x7/3+289x9/4]01 \left[ \frac{18}{7} x^{7/3} + \frac{28}{9} x^{9/4} \right]_{0}^{1}
=(18717/3+28919/4)(18707/3+28909/4) = \left( \frac{18}{7} \cdot 1^{7/3} + \frac{28}{9} \cdot 1^{9/4} \right) - \left( \frac{18}{7} \cdot 0^{7/3} + \frac{28}{9} \cdot 0^{9/4} \right)
=187+289 = \frac{18}{7} + \frac{28}{9}
=16263+19663 = \frac{162}{63} + \frac{196}{63}
=35863 = \frac{358}{63}
The value of the integral is:
35863 \boxed{\frac{358}{63}}
Let's move on to the next problem.
### Problem 7: Evaluate the integral 21(6y5+4y5)dy\int_{-2}^{-1}\left(6 y^{5}+\frac{4}{y^{5}}\right) \, dy
_ASSUMPTIONS_:
1. We are dealing with a definite integral from -2 to -1.
2. The integrand is a sum of a polynomial and a rational function.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord