Math

QuestionEvaluate the function f(x)=25x52f(x)=\frac{2}{5} x-\frac{5}{2}. What is f(5)f(5)? Options: A) 12\frac{1}{2} B) 55 C) 12-\frac{1}{2} D) 52-\frac{5}{2}. Also, what does f(10)=32f(10)=\frac{3}{2} mean? A) Output is 32\frac{3}{2} for input 10 B) Output is 10 for input 32\frac{3}{2} C) Output is f(x)f(x) for input 10 D) Output is f(32)f\left(\frac{3}{2}\right) for input 10.

Studdy Solution

STEP 1

Assumptions1. The function is given by f(x)=5x5f(x)=\frac{}{5} x-\frac{5}{} . We are asked to evaluate the function at x=5x=5
3. We are asked to interpret the function notation f(10)=3f(10)=\frac{3}{}

STEP 2

First, we need to substitute x=5x=5 into the function to find the value of f(5)f(5).
f(5)=25×552f(5)=\frac{2}{5} \times5-\frac{5}{2}

STEP 3

Calculate the value of f(5)f(5).
f(5)=252f(5)=2-\frac{5}{2}

STEP 4

To subtract the fractions, we need to find a common denominator. The common denominator of2 and 2\frac{}{2} is2.
f()=422f()=\frac{4}{2}-\frac{}{2}

STEP 5

Subtract the fractions.
f(5)=452f(5)=\frac{4-5}{2}

STEP 6

Calculate the value of f(5)f(5).
f(5)=12f(5)=\frac{-1}{2}So, the correct function notation when x=5x=5 is f(5)=12f(5)=-\frac{1}{2}, which corresponds to option C.

STEP 7

Now, let's interpret the function notation f(10)=32f(10)=\frac{3}{2}. This notation means that when the input is10, the output of the function is 32\frac{3}{2}.So, the statement that best describes the function notation f(10)=32f(10)=\frac{3}{2} is "The output is 32\frac{3}{2} when the input is10", which corresponds to option A.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord