Math  /  Data & Statistics

QuestionEvaluate the following probabilities based on the standard normal distribution:
Round all answers to at least 3 decimal places. a. P(z<2.36)=P(z<2.36)= \square b. P(z>1.23)=P(z>-1.23)= \square c. P(0.74<z<2.19)=P(-0.74<z<2.19)= \square d. P(z>0.5)=P(z>0.5)= \square

Studdy Solution

STEP 1

1. The variable z z follows a standard normal distribution, which has a mean of 0 and a standard deviation of 1.
2. Probabilities will be found using the standard normal distribution table or a calculator with statistical functions.

STEP 2

1. Calculate P(z<2.36) P(z < 2.36) .
2. Calculate P(z>1.23) P(z > -1.23) .
3. Calculate P(0.74<z<2.19) P(-0.74 < z < 2.19) .
4. Calculate P(z>0.5) P(z > 0.5) .

STEP 3

Use the standard normal distribution table or calculator to find P(z<2.36) P(z < 2.36) .
P(z<2.36)0.9909 P(z < 2.36) \approx 0.9909

STEP 4

To find P(z>1.23) P(z > -1.23) , use the identity P(z>a)=1P(z<a) P(z > a) = 1 - P(z < a) .
First, find P(z<1.23) P(z < -1.23) .
P(z<1.23)0.1093 P(z < -1.23) \approx 0.1093
Then calculate:
P(z>1.23)=1P(z<1.23)10.1093=0.8907 P(z > -1.23) = 1 - P(z < -1.23) \approx 1 - 0.1093 = 0.8907

STEP 5

To find P(0.74<z<2.19) P(-0.74 < z < 2.19) , use the formula:
P(a<z<b)=P(z<b)P(z<a) P(a < z < b) = P(z < b) - P(z < a)
First, find P(z<2.19) P(z < 2.19) .
P(z<2.19)0.9857 P(z < 2.19) \approx 0.9857
Then find P(z<0.74) P(z < -0.74) .
P(z<0.74)0.2296 P(z < -0.74) \approx 0.2296
Calculate:
P(0.74<z<2.19)=P(z<2.19)P(z<0.74)0.98570.2296=0.7561 P(-0.74 < z < 2.19) = P(z < 2.19) - P(z < -0.74) \approx 0.9857 - 0.2296 = 0.7561

STEP 6

To find P(z>0.5) P(z > 0.5) , use the identity P(z>a)=1P(z<a) P(z > a) = 1 - P(z < a) .
First, find P(z<0.5) P(z < 0.5) .
P(z<0.5)0.6915 P(z < 0.5) \approx 0.6915
Then calculate:
P(z>0.5)=1P(z<0.5)10.6915=0.3085 P(z > 0.5) = 1 - P(z < 0.5) \approx 1 - 0.6915 = 0.3085
The probabilities are: a. P(z<2.36)0.9909 P(z < 2.36) \approx 0.9909 b. P(z>1.23)0.8907 P(z > -1.23) \approx 0.8907 c. P(0.74<z<2.19)0.7561 P(-0.74 < z < 2.19) \approx 0.7561 d. P(z>0.5)0.3085 P(z > 0.5) \approx 0.3085

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord