Math

QuestionEvaluate the functions: 1. (hg)(x)(h \circ g)(x) and 2. 2[f(gg)](x)2 \cdot [f \circ (g \circ g)](x), where g(x)=3x2g(x)=3x-2, f(x)=xf(x)=\sqrt{-x}, h(x)=3x+4h(x)=\frac{3}{x+4}.

Studdy Solution

STEP 1

Assumptions1. The functions are defined as follows - g(x)=3xg(x)=3x- - f(x)=xf(x)=\sqrt{-x} - h(x)=3x+4h(x)=\frac{3}{x+4} . The composite functions are defined as follows - hg(x)h \circ g(x) - f(gg)(x)f \circ(g \circ g)(x)3. The operations to be performed are - Evaluate 1(hg)(x)1 \cdot(h \circ g)(x) - Evaluate [f(gg)(x)] \cdot[f \circ(g \circ g)(x)]

STEP 2

First, let's evaluate the composite function hg(x)h \circ g(x). This means we substitute g(x)g(x) into h(x)h(x).
hg(x)=h(g(x))=g(x)+4h \circ g(x) = h(g(x)) = \frac{}{g(x)+4}

STEP 3

Now, substitute g(x)=3x2g(x) =3x -2 into the above equation.
hg(x)=33x2+h \circ g(x) = \frac{3}{3x -2 +}

STEP 4

implify the equation.
hg(x)=33x+2h \circ g(x) = \frac{3}{3x +2}

STEP 5

Now, evaluate 1(hg)(x)1 \cdot(h \circ g)(x) by multiplying the result of hg(x)h \circ g(x) by1.
1(hg)(x)=133x+2=33x+21 \cdot(h \circ g)(x) =1 \cdot \frac{3}{3x +2} = \frac{3}{3x +2}

STEP 6

Next, let's evaluate the composite function f(gg)(x)f \circ(g \circ g)(x). This means we substitute g(x)g(x) into g(x)g(x) first, and then substitute the result into f(x)f(x).
f(gg)(x)=f(g(g(x)))f \circ(g \circ g)(x) = f(g(g(x)))

STEP 7

Substitute g(x)=3x2g(x) =3x -2 into g(x)g(x).
g(g(x))=g(3x2)=3(3x2)2=9x62=9xg(g(x)) = g(3x -2) =3(3x -2) -2 =9x -6 -2 =9x -

STEP 8

Now, substitute g(g(x))=x8g(g(x)) =x -8 into f(x)f(x).
f(gg)(x)=f(x8)=(x8)f \circ(g \circ g)(x) = f(x -8) = \sqrt{-(x -8)}

STEP 9

implify the equation.
f(gg)(x)=9x+8f \circ(g \circ g)(x) = \sqrt{-9x +8}

STEP 10

Finally, evaluate 2[f(gg)(x)]2 \cdot[f \circ(g \circ g)(x)] by multiplying the result of f(gg)(x)f \circ(g \circ g)(x) by2.
2[f(gg)(x)]=29x+82 \cdot[f \circ(g \circ g)(x)] =2 \cdot \sqrt{-9x +8}So, the solutions are. (hg)(x)=33x+2 \cdot(h \circ g)(x) = \frac{3}{3x +2}
2. 2[f(gg)(x)]=29x+82 \cdot[f \circ(g \circ g)(x)] =2 \cdot \sqrt{-9x +8}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord