Math

QuestionEvaluate x2+y3y\frac{x^{2}+y}{3 y} for x=3x=-3 and y=2y=-2. Choose A or B: A. x2+y3y=\frac{x^{2}+y}{3 y}=\square or B. Undefined.

Studdy Solution

STEP 1

Assumptions1. The expression to evaluate is x+y3y\frac{x^{}+y}{3 y} . The given values are x=3x=-3 and y=y=-

STEP 2

We need to substitute the given values of xx and yy into the expression.x2+yy=()2+(2)(2)\frac{x^{2}+y}{ y} = \frac{(-)^{2}+(-2)}{ (-2)}

STEP 3

Calculate the numerator and the denominator separately.
umerator (3)2+(2)=92=7(-3)^{2}+(-2) =9 -2 =7
Denominator 3(2)=63 (-2) = -6
So, the expression becomes76\frac{7}{-6}

STEP 4

implify the expression. The negative sign can be placed in the numerator or the denominator.
76=76\frac{7}{-6} = -\frac{7}{6}The expression x2+y3y\frac{x^{2}+y}{3 y} evaluates to 76-\frac{7}{6} when x=3x=-3 and y=2y=-2.
So, the correct choice is A. x2+y3y=76\frac{x^{2}+y}{3 y}=-\frac{7}{6}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord